The English version of is the official project site. Translated sites are community supported on a best-effort basis.

Protect a web application by using OpenID Connect (OIDC) authorization code flow

Discover how to secure application HTTP endpoints by using the Quarkus OpenID Connect (OIDC) authorization code flow mechanism with the Quarkus OIDC extension, providing robust authentication and authorization.

To learn about how well-known social providers such as Apple, Facebook, GitHub, Google, Mastodon, Microsoft, Twitch, Twitter (X), and Spotify can be used with Quarkus OIDC, see Configuring well-known OpenID Connect providers. See also, Authentication mechanisms in Quarkus.

If you want to protect your service applications by using OIDC Bearer token authentication, see OIDC Bearer token authentication.


Para concluir este guia, você precisa:

  • Cerca de 15 minutos

  • Um IDE

  • JDK 17+ installed with JAVA_HOME configured appropriately

  • Apache Maven 3.9.6

  • Um container runtime instalado (Docker ou Podman)

  • Opcionalmente, o Quarkus CLI se você quiser usá-lo

  • Opcionalmente, Mandrel ou GraalVM instalado e configurado apropriadamente se você quiser criar um executável nativo (ou Docker se você usar uma compilação de contêiner nativo)


In this example, we build a simple web application with a single page:

  • /index.html

This page is protected, and only authenticated users can access it.


Follow the instructions in the next sections and create the application step by step. Alternatively, you can go right to the completed example.

Clone the Git repository by running the git clone command. Alternatively, download an archive.

The solution is located in the security-openid-connect-web-authentication-quickstart directory.

1. Crie o projeto Maven

First, we need a new project. Create a new project by running the following command:

quarkus create app org.acme:security-openid-connect-web-authentication-quickstart \
    --extension='rest,oidc' \
cd security-openid-connect-web-authentication-quickstart

Para criar um projeto Gradle, adicione a opção --gradle ou --gradle-kotlin-dsl.

Para obter mais informações sobre como instalar e usar a CLI do Quarkus, consulte o guia Quarkus CLI.

mvn io.quarkus.platform:quarkus-maven-plugin:3.9.2:create \
    -DprojectGroupId=org.acme \
    -DprojectArtifactId=security-openid-connect-web-authentication-quickstart \
    -Dextensions='rest,oidc' \
cd security-openid-connect-web-authentication-quickstart

Para criar um projeto Gradle, adicione a opção '-DbuildTool=gradle' ou '-DbuildTool=gradle-kotlin-dsl'.

Para usuários do Windows:

  • Se estiver usando cmd, (não use barra invertida '\' e coloque tudo na mesma linha)

  • Se estiver usando o Powershell, envolva os parâmetros '-D' entre aspas duplas, por exemplo, '"-DprojectArtifactId=security-openid-connect-web-authentication-quickstart"'

If you already have your Quarkus project configured, you can add the oidc extension to your project by running the following command in your project base directory:

quarkus extension add oidc
./mvnw quarkus:add-extension -Dextensions='oidc'
./gradlew addExtension --extensions='oidc'

This adds the following dependency to your build file:


2. Escreva a aplicação

Let’s write a simple Jakarta REST resource that has all the tokens returned in the authorization code grant response injected:


import jakarta.inject.Inject;

import org.eclipse.microprofile.jwt.Claims;
import org.eclipse.microprofile.jwt.JsonWebToken;

import io.quarkus.oidc.IdToken;
import io.quarkus.oidc.RefreshToken;

public class TokenResource {

    * Injection point for the ID token issued by the OpenID Connect provider
   JsonWebToken idToken;

    * Injection point for the access token issued by the OpenID Connect provider
   JsonWebToken accessToken;

    * Injection point for the refresh token issued by the OpenID Connect provider
   RefreshToken refreshToken;

    * Returns the tokens available to the application.
    * This endpoint exists only for demonstration purposes.
    * Do not expose these tokens in a real application.
    * @return an HTML page containing the tokens available to the application.
   public String getTokens() {
       StringBuilder response = new StringBuilder().append("<html>")

       Object userName = this.idToken.getClaim(Claims.preferred_username);

       if (userName != null) {
           response.append("<li>username: ").append(userName.toString()).append("</li>");

       Object scopes = this.accessToken.getClaim("scope");

       if (scopes != null) {
           response.append("<li>scopes: ").append(scopes.toString()).append("</li>");

       response.append("<li>refresh_token: ").append(refreshToken.getToken() != null).append("</li>");

       return response.append("</ul>").append("</body>").append("</html>").toString();

This endpoint has ID, access, and refresh tokens injected. It returns a preferred_username claim from the ID token, a scope claim from the access token, and a refresh token availability status.

You only need to inject the tokens if the endpoint needs to use the ID token to interact with the currently authenticated user or use the access token to access a downstream service on behalf of this user.

For more information, see the Access ID and Access Tokens section of the reference guide.

3. Configure a aplicação

The OIDC extension allows you to define the configuration by using the file in the src/main/resources directory.


This is the simplest configuration you can have when enabling authentication to your application.

The quarkus.oidc.client-id property references the client_id issued by the OIDC provider, and the quarkus.oidc.credentials.secret property sets the client secret.

The quarkus.oidc.application-type property is set to web-app to tell Quarkus that you want to enable the OIDC authorization code flow so that your users are redirected to the OIDC provider to authenticate.

Finally, the quarkus.http.auth.permission.authenticated permission is set to tell Quarkus about the paths you want to protect. In this case, all paths are protected by a policy that ensures only authenticated users can access them. For more information, see Security Authorization Guide.

4. Start and configure the Keycloak server

To start a Keycloak server, use Docker and run the following command:

docker run --name keycloak -e KEYCLOAK_ADMIN=admin -e KEYCLOAK_ADMIN_PASSWORD=admin -p 8180:8080{keycloak.version} start-dev

where keycloak.version is set to 23.0.0 or later.

You can access your Keycloak Server at localhost:8180.

To access the Keycloak Administration Console, log in as the admin user. The username and password are both admin.

To create a new realm, import the realm configuration file. For more information, see the Keycloak documentation about how to create and configure a new realm.

5. Run the application in dev and JVM modes

To run the application in dev mode, use:

quarkus dev
./mvnw quarkus:dev
./gradlew --console=plain quarkusDev

After exploring the application in dev mode, you can run it as a standard Java application.

First, compile it:

quarkus build
./mvnw install
./gradlew build

Then, run it:

java -jar target/quarkus-app/quarkus-run.jar

6. Run the application in Native mode

This same demo can be compiled into native code. No modifications are required.

This implies that you no longer need to install a JVM on your production environment, as the runtime technology is included in the produced binary and optimized to run with minimal resources.

Compilation takes longer, so this step is turned off by default. You can build again by enabling the native build:

quarkus build --native
./mvnw install -Dnative
./gradlew build -Dquarkus.package.type=native

After a while, you can run this binary directly:


7. Test the application

To test the application, open your browser and access the following URL:

If everything works as expected, you are redirected to the Keycloak server to authenticate.

To authenticate to the application, enter the following credentials at the Keycloak login page:

  • Username: alice

  • Password: alice

After clicking the Login button, you are redirected back to the application, and a session cookie will be created.

The session for this demo is valid for a short period of time and, on every page refresh, you will be asked to re-authenticate. For information about how to increase the session timeouts, see the Keycloak session timeout documentation. For example, you can access the Keycloak Admin console directly from the dev UI by clicking the Keycloak Admin link if you use Dev Services for Keycloak in dev mode:

Dev UI OpenID Connect Card

For more information about writing the integration tests that depend on Dev Services for Keycloak, see the Dev Services for Keycloak section.


You have learned how to set up and use the OIDC authorization code flow mechanism to protect and test application HTTP endpoints. After you have completed this tutorial, explore OIDC Bearer token authentication and other authentication mechanisms.

Conteúdo Relacionado