Apache Pulsar Reference Guide
This reference guide demonstrates how your Quarkus application can utilize Quarkus Messaging to interact with Apache Pulsar.
1. Introdução
Apache Pulsar is an open-source, distributed messaging and streaming platform built for the cloud. It provides a multi-tenant, high-performance solution to server messaging with tiered storage capabilities.
Pulsar implements the publish-subscribe pattern:
-
Producers publish messages to topics.
-
Consumers create subscriptions to those topics to receive and process incoming messages, and send acknowledgments to the broker when processing is finished.
-
When a subscription is created, Pulsar retains all messages, even if the consumer is disconnected. The retained messages are discarded only when a consumer acknowledges that all these messages are processed successfully.
A Pulsar cluster consists of
-
One or more brokers, which are stateless components.
-
A metadata store for maintaining topic metadata, schema, coordination and cluster configuration.
-
A set of bookies used for persistent storage of messages.
2. Quarkus Extension for Apache Pulsar
Quarkus provides support for Apache Pulsar through SmallRye Reactive Messaging framework. Based on Eclipse MicroProfile Reactive Messaging specification 3.0, it proposes a flexible programming model bridging CDI and event-driven.
This guide provides an in-depth look on Apache Pulsar and SmallRye Reactive Messaging framework. For a quick start take a look at Getting Started to Quarkus Messaging with Apache Pulsar. |
You can add the messaging-pulsar
extensions to your project by running the following command in your project base directory:
quarkus extension add messaging-pulsar
./mvnw quarkus:add-extension -Dextensions='messaging-pulsar'
./gradlew addExtension --extensions='messaging-pulsar'
Isto irá adicionar o seguinte trecho no seu arquivo de build:
<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-messaging-pulsar</artifactId>
</dependency>
implementation("io.quarkus:quarkus-messaging-pulsar")
The extension includes |
3. Configuring SmallRye Pulsar Connector
Because SmallRye Reactive Messaging framework supports different messaging backends like Apache Kafka, Apache Pulsar, AMQP, Apache Camel, JMS, MQTT, etc., it employs a generic vocabulary:
-
Applications send and receive messages.
Message
wraps a payload and can be extended with some metadata. This should not be confused with a PulsarMessage
, which consists of value, key With the Pulsar connector, a Reactive Messaging message corresponds to a Pulsar message. -
Messages transit on channels. Application components connect to channels to publish and consume messages. The Pulsar connector maps channels to Pulsar topics.
-
Channels are connected to message backends using connectors. Connectors are configured to map incoming messages to a specific channel (consumed by the application) and collect outgoing messages sent to a specific channel. Each connector is dedicated to a specific messaging technology. For example, the connector dealing with Pulsar is named
smallrye-pulsar
.
A minimal configuration for the Pulsar connector with an incoming channel looks like the following:
%prod.pulsar.client.serviceUrl=pulsar:6650 (1)
mp.messaging.incoming.prices.connector=smallrye-pulsar (2)
1 | Configure the Pulsar broker service url for the production profile.
You can configure it globally or per channel using mp.messaging.incoming.$channel.serviceUrl property.
In dev mode and when running tests, Dev Services para Pulsar automatically starts a Pulsar broker. |
2 | Configure the connector to manage the prices channel. By default, the topic name is same as the channel name. |
You can configure the topic attribute to override it.
O prefixo %prod indica que a propriedade só é utilizada quando a aplicação é executada em modo de produção (portanto, não em desenvolvimento ou teste). Consulte a documentação do Perfil para obter mais detalhes.
|
Fixação automática do conector
If you have a single connector on your classpath, you can omit the Esta ligação automática pode ser desativada utilizando:
|
For more configuration options see Configuring Pulsar clients.
4. Receiving messages from Pulsar
The Pulsar Connector connects to a Pulsar broker using a Pulsar client and creates consumers to
receive messages from Pulsar brokers, and it maps each Pulsar Message
into Reactive Messaging Message
.
4.1. Exemplo
Let’s imagine you have a Pulsar broker running, and accessible using the pulsar:6650
address.
Configure your application to receive Pulsar messages on the prices
channel as follows:
mp.messaging.incoming.prices.serviceUrl=pulsar://pulsar:6650 (1)
mp.messaging.incoming.prices.subscriptionInitialPosition=Earliest (2)
-
Configure the Pulsar broker service url.
-
Make sure consumer subscription starts receiving messages from the
Earliest
position.
You don’t need to set the Pulsar topic, nor the consumer name.
By default, the connector uses the channel name ( |
In Pulsar, consumers need to provide a |
Then, your application can receive the double
payload directly:
import org.eclipse.microprofile.reactive.messaging.Incoming;
import jakarta.enterprise.context.ApplicationScoped;
@ApplicationScoped
public class PriceConsumer {
@Incoming("prices")
public void consume(double price) {
// process your price.
}
}
Or, you can retrieve the Reactive Messaging type Message<Double>
:
@Incoming("prices")
public CompletionStage<Void> consume(Message<Double> msg) {
// access record metadata
var metadata = msg.getMetadata(PulsarIncomingMessageMetadata.class).orElseThrow();
// process the message payload.
double price = msg.getPayload();
// Acknowledge the incoming message (acknowledge the Pulsar message back to the broker)
return msg.ack();
}
The Reactive Messaging Message
type lets the consuming method access the incoming message metadata and handle the acknowledgment manually.
If you want to access the Pulsar message objects directly, use:
@Incoming("prices")
public void consume(org.apache.pulsar.client.api.Message<Double> msg) {
String key = msg.getKey();
String value = msg.getValue();
String topic = msg.topicName();
// ...
}
org.apache.pulsar.client.api.Message
is provided by the underlying Pulsar client and can be used directly with the consumer method.
Alternatively, your application can inject a Multi
in your bean, identified with the channel name and subscribe to its events as the following example:
import io.smallrye.mutiny.Multi;
import org.eclipse.microprofile.reactive.messaging.Channel;
import jakarta.inject.Inject;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;
import org.jboss.resteasy.reactive.RestStreamElementType;
@Path("/prices")
public class PriceResource {
@Inject
@Channel("prices")
Multi<Double> prices;
@GET
@Path("/prices")
@RestStreamElementType(MediaType.TEXT_PLAIN)
public Multi<Double> stream() {
return prices;
}
}
Ao consumir mensagens com |
Os seguintes tipos podem ser injetados como canais:
@Inject @Channel("prices") Multi<Double> streamOfPayloads;
@Inject @Channel("prices") Multi<Message<Double>> streamOfMessages;
@Inject @Channel("prices") Publisher<Double> publisherOfPayloads;
@Inject @Channel("prices") Publisher<Message<Double>> publisherOfMessages;
As with the previous Message
example, if your injected channel receives payloads (Multi<T>
), it acknowledges the message automatically, and support multiple subscribers.
If your injected channel receives Message (Multi<Message<T>>
), you will be responsible for the acknowledgment and broadcasting.
4.2. Bloqueando o processamento
A Mensageria Reativa invoca seu método em um thread de E/S. Consulte a documentação da Arquitetura Reativa do Quarkus para obter mais detalhes sobre esse tópico. Mas, muitas vezes, você precisa combinar o envio de mensagens reativas com processamento blocante, como interações de banco de dados. Para isso, você precisa usar a anotação @Blocking
indicando que o processamento está bloqueando e não deve ser executado no thread do chamador.
Por exemplo, o código a seguir ilustra como é possível armazenar conteúdos recebidos em uma base de dados usando o Hibernate com Panache:
import io.smallrye.reactive.messaging.annotations.Blocking;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.transaction.Transactional;
@ApplicationScoped
public class PriceStorage {
@Incoming("prices")
@Transactional
public void store(int priceInUsd) {
Price price = new Price();
price.value = priceInUsd;
price.persist();
}
}
Existem 2 anotações de
Eles têm o mesmo efeito. Portanto, você pode usar os dois. O primeiro fornece um ajuste mais refinado, como o pool de trabalho a ser usado e se ele preserva a ordem. O segundo, usado também com outros recursos reativos do Quarkus, usa o pool de trabalho padrão e preserva a ordem. Informações detalhadas sobre a utilização da anotação |
@RunOnVirtualThread
Para executar o processamento blocante em threads virtuais Java, consulte a documentação de suporte do Quarkus à Virtual Thread com Mensageria Reativa. |
@Transactional
Se o seu método estiver anotado com |
4.3. Pulsar Subscription Types
Pulsar subscriptionType consumer configuration can be used flexibly to achieve different messaging scenarios, such as publish-subscribe or queuing.
-
Exclusive subscription type allows specifying a unique subscription name for "fan-out pub-sub messaging". This is the default subscription type.
-
Shared, Key_Shared or Failover subscription types allow multiple consumers to share the same subscription name, to achieve "message queuing" among consumers.
If a subscription name is not provided Quarkus generates a unique id.
4.4. Deserialization and Pulsar Schema
The Pulsar Connector allows configuring Schema configuration for the underlying Pulsar consumer. See the Pulsar Schema Configuration & Auto Schema Discovery for more information.
4.5. Acknowledgement Strategies
When a message produced from a Pulsar Message is acknowledged, the connector sends an acknowledgement request to the Pulsar broker. All Reactive Messaging messages need to be acknowledged, which is handled automatically in most cases. Acknowledgement requests can be sent to the Pulsar broker using the following two strategies:
-
Individual acknowledgement is the default strategy, an acknowledgement request is to the broker for each message.
-
Cumulative acknowledgement, configured using
ack-strategy=cumulative
, the consumer only acknowledges the last message it received. All messages in the stream up to (and including) the provided message are not redelivered to that consumer.
By default, the Pulsar consumer does not wait for the acknowledgement confirmation from the broker to validate an acknowledgement.
You can enable this using |
4.6. Failure Handling Strategies
If a message produced from a Pulsar message is nacked, a failure strategy is applied. The Quarkus Pulsar extension supports 4 strategies:
-
nack
(default) sends negative acknowledgment to the broker, triggering the broker to redeliver this message to the consumer. The negative acknowledgment can be further configured usingnegativeAckRedeliveryDelayMicros
andnegativeAck.redeliveryBackoff
properties. -
fail
fail the application, no more messages will be processed. -
ignore
the failure is logged, but the acknowledgement strategy will be applied and the processing will continue. -
continue
the failure is logged, but processing continues without applying acknowledgement or negative acknowledgement. This strategy can be used with Acknowledgement timeout configuration. -
reconsume-later
sends the message to the retry letter topic using thereconsumeLater
API to be reconsumed with a delay. The delay can be configured using thereconsumeLater.delay
property and defaults to 3 seconds. Custom delay or properties per message can be configured by adding an instance ofio.smallrye.reactive.messaging.pulsar.PulsarReconsumeLaterMetadata
to the failure metadata.
4.6.1. Acknowledgement timeout
Similar to the negative acknowledgement, with the acknowledgement timeout mechanism, the Pulsar client tracks the unacknowledged messages, for the given ackTimeout period and sends redeliver unacknowledged messages request to the broker, thus the broker resends the unacknowledged messages to the consumer.
To configure the timeout and redelivery backoff mechanism you can set ackTimeoutMillis
and ackTimeout.redeliveryBackoff
properties.
The ackTimeout.redeliveryBackoff
value accepts comma separated values of min delay in milliseconds, max delay in milliseconds and multiplier respectively:
mp.messaging.incoming.out.failure-strategy=continue
mp.messaging.incoming.out.ackTimeoutMillis=10000
mp.messaging.incoming.out.ackTimeout.redeliveryBackoff=1000,60000,2
4.6.2. Reconsume later and retry letter topic
The retry letter topic pushes messages that are not consumed successfully to a dead letter topic and continue message consumption. Note that dead letter topic can be used in different message redelivery methods, such as acknowledgment timeout, negative acknowledgment or retry letter topic.
mp.messaging.incoming.data.failure-strategy=reconsume-later
mp.messaging.incoming.data.reconsumeLater.delay=5000
mp.messaging.incoming.data.retryEnable=true
mp.messaging.incoming.data.negativeAck.redeliveryBackoff=1000,60000,2
4.6.3. Dead-letter topic
The dead letter topic pushes messages that are not consumed successfully to a dead letter topic an continue message consumption. Note that dead letter topic can be used in different message redelivery methods, such as acknowledgment timeout, negative acknowledgment or retry letter topic.
mp.messaging.incoming.data.failure-strategy=nack
mp.messaging.incoming.data.deadLetterPolicy.maxRedeliverCount=2
mp.messaging.incoming.data.deadLetterPolicy.deadLetterTopic=my-dead-letter-topic
mp.messaging.incoming.data.deadLetterPolicy.initialSubscriptionName=my-dlq-subscription
mp.messaging.incoming.data.subscriptionType=Shared
Negative acknowledgment or acknowledgment timeout methods for redelivery will redeliver the whole batch of messages containing at least an unprocessed message. See Producer Batching for more information. |
4.7. Receiving Pulsar Messages in Batches
By default, incoming methods receive each Pulsar message individually.
You can enable batch mode using batchReceive=true
property, or setting a batchReceivePolicy
in consumer configuration.
@Incoming("prices")
public CompletionStage<Void> consumeMessage(Message<org.apache.pulsar.client.api.Messages<Double>> messages) {
for (org.apache.pulsar.client.api.Message<Double> msg : messages.getPayload()) {
String key = msg.getKey();
String topic = msg.getTopicName();
long timestamp = msg.getEventTime();
//... process messages
}
// ack will commit the latest offsets (per partition) of the batch.
return messages.ack();
}
@Incoming("prices")
public void consumeRecords(org.apache.pulsar.client.api.Messages<Double> messages) {
for (org.apache.pulsar.client.api.Message<Double> msg : messages) {
//... process messages
}
}
Or you can directly receive the list of payloads to the consume method:
@Incoming("prices")
public void consume(List<Double> prices) {
for (double price : prices) {
// process price
}
}
Quarkus auto-detects batch types for incoming channels and sets batch configuration automatically.
You can configure batch mode explicitly with |
5. Sending messages to Pulsar
The Pulsar Connector can write Reactive Messaging `Message`s as Pulsar Message.
5.1. Exemplo
Let’s imagine you have a Pulsar broker running, and accessible using the pulsar:6650
address.
Configure your application to write the messages from the prices
channel into a Pulsar Messages as follows:
mp.messaging.outgoing.prices.serviceUrl=pulsar://pulsar:6650 (1)
-
Configure the Pulsar broker service url.
You don’t need to set the Pulsar topic, nor the producer name.
By default, the connector uses the channel name ( |
Then, your application must send Message<Double>
to the prices
channel. It can use double
payloads as in the following snippet:
import io.smallrye.mutiny.Multi;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import jakarta.enterprise.context.ApplicationScoped;
import java.time.Duration;
import java.util.Random;
@ApplicationScoped
public class PulsarPriceProducer {
private final Random random = new Random();
@Outgoing("prices-out")
public Multi<Double> generate() {
// Build an infinite stream of random prices
// It emits a price every second
return Multi.createFrom().ticks().every(Duration.ofSeconds(1))
.map(x -> random.nextDouble());
}
}
Note that the generate method returns a Multi<Double>
, which implements the Flow.Publisher
interface.
This publisher will be used by the framework to generate messages and send them to the configured Pulsar topic.
Instead of returning a payload, you can return a io.smallrye.reactive.messaging.pulsar.OutgoingMessage
to send Pulsar messages:
@Outgoing("out")
public Multi<OutgoingMessage<Double>> generate() {
return Multi.createFrom().ticks().every(Duration.ofSeconds(1))
.map(x -> OutgoingMessage.of("my-key", random.nextDouble()));
}
O conteúdo pode ser envolvido em uma org.eclipse.microprofile.reactive.messaging.Message
para ter mais controle sobre os registros escritos:
@Outgoing("generated-price")
public Multi<Message<Double>> generate() {
return Multi.createFrom().ticks().every(Duration.ofSeconds(1))
.map(x -> Message.of(random.nextDouble())
.addMetadata(PulsarOutgoingMessageMetadata.builder()
.withKey("my-key")
.withProperties(Map.of("property-key", "value"))
.build()));
}
When sending Messages
, you can add an instance of
io.smallrye.reactive.messaging.pulsar.PulsarOutgoingMessageMetadata
to influence how the message is going to be written to Pulsar.
Other than method signatures returning a Flow.Publisher
, outgoing method can also return single message.
In this case the producer will use this method as generator to create an infinite stream.
@Outgoing("prices-out") T generate(); // T excluding void
@Outgoing("prices-out") Message<T> generate();
@Outgoing("prices-out") Uni<T> generate();
@Outgoing("prices-out") Uni<Message<T>> generate();
@Outgoing("prices-out") CompletionStage<T> generate();
@Outgoing("prices-out") CompletionStage<Message<T>> generate();
5.2. Serialization and Pulsar Schema
The Pulsar Connector allows configuring Schema configuration for the underlying Pulsar producer. See the Pulsar Schema Configuration & Auto Schema Discovery for more information.
5.3. Sending key/value pairs
In order to send Kev/Value pairs to Pulsar, you can configure the Pulsar producer Schema with a KeyValue schema.
package pulsar.outbound;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.inject.Produces;
import org.apache.pulsar.client.api.Schema;
import org.apache.pulsar.common.schema.KeyValue;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import io.smallrye.common.annotation.Identifier;
@ApplicationScoped
public class PulsarKeyValueExample {
@Identifier("out")
@Produces
Schema<KeyValue<String, Long>> schema = Schema.KeyValue(Schema.STRING, Schema.INT64);
@Incoming("in")
@Outgoing("out")
public KeyValue<String, Long> process(long in) {
return new KeyValue<>("my-key", in);
}
}
If you need more control on the written records, use PulsarOutgoingMessageMetadata
.
5.4. Acknowledgement
Upon receiving a message from a Producer, a Pulsar broker assigns a MessageId
to the message and sends it back to the producer,
confirming that the message is published.
By default, the connector does wait for Pulsar to acknowledge the record
to continue the processing (acknowledging the received Message
).
You can disable this by setting the waitForWriteCompletion
attribute to false
.
If a record cannot be written, the message is nacked
.
The Pulsar client automatically retries sending messages in case of failure, until the send timeout is reached.
The send timeout is configurable with |
5.5. Back-pressure and inflight records
The Pulsar outbound connector handles back-pressure, monitoring the number of pending messages waiting to be written to the Pulsar broker.
The number of pending messages is configured using the maxPendingMessages
attribute and defaults to 1000.
The connector only sends that amount of messages concurrently. No other messages will be sent until at least one pending message gets acknowledged by the broker. Then, the connector writes a new message to Pulsar when one of the broker’s pending messages get acknowledged.
You can also remove the limit of pending messages by setting maxPendingMessages
to 0
.
Note that Pulsar also enables to configure the number of pending messages per partition using maxPendingMessagesAcrossPartitions
.
5.6. Producer Batching
By default, the Pulsar producer batches individual messages together to be published to the broker.
You can configure batching parameters using batchingMaxPublishDelayMicros
, batchingPartitionSwitchFrequencyByPublishDelay
,
batchingMaxMessages
, batchingMaxBytes
configuration properties, or disable it completely with batchingEnabled=false
.
When using Key_Shared
consumer subscriptions, the batcherBuilder
can be configured to BatcherBuilder.KEY_BASED
.
6. Pulsar Transactions and Exactly-Once Processing
Pulsar transactions enable event streaming applications to consume, process, and produce messages in one atomic operation.
Transactions allow one or multiple producers to send batch of messages to multiple topics where all messages in the batch are eventually visible to any consumer, or none is ever visible to consumers.
In order to be used, transaction support needs to be activated on the broker configuration, using |
On the client side, the transaction support also needs to be enabled on PulsarClient
configuration:
mp.messaging.outgoing.tx-producer.enableTransaction=true
Pulsar connector provides PulsarTransactions
custom emitter for writing records inside a transaction.
It can be used as a regular emitter @Channel
:
package pulsar.outbound;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.inject.Inject;
import org.eclipse.microprofile.reactive.messaging.Channel;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Message;
import io.smallrye.mutiny.Uni;
import io.smallrye.reactive.messaging.pulsar.OutgoingMessage;
import io.smallrye.reactive.messaging.pulsar.transactions.PulsarTransactions;
@ApplicationScoped
public class PulsarTransactionalProducer {
@Inject
@Channel("tx-out-example")
PulsarTransactions<OutgoingMessage<Integer>> txProducer;
@Inject
@Channel("other-producer")
PulsarTransactions<String> producer;
@Incoming("in")
public Uni<Void> emitInTransaction(Message<Integer> in) {
return txProducer.withTransaction(emitter -> {
emitter.send(OutgoingMessage.of("a", 1));
emitter.send(OutgoingMessage.of("b", 2));
emitter.send(OutgoingMessage.of("c", 3));
producer.send(emitter, "4");
producer.send(emitter, "5");
producer.send(emitter, "6");
return Uni.createFrom().completionStage(in::ack);
});
}
}
The function given to the withTransaction
method receives a TransactionalEmitter
for producing records, and returns a Uni
that provides the result of the transaction.
If the processing completes successfully, the producer is flushed and the transaction is committed.
If the processing throws an exception, returns a failing Uni
, or marks the TransactionalEmitter
for abort, the transaction is aborted.
Multiple transactional producers can participate in a single transaction. This ensures all messages are sent using the started transaction and before the transaction is committed, all participating producers are flushed. |
If this method is called on a Vert.x context, the processing function is also called on that context. Otherwise, it is called on the sending thread of the producer.
6.1. Processamento Exactly-Once (Exatamente Único)
Pulsar Transactions API also allows managing consumer offsets inside a transaction, together with produced messages. This in turn enables coupling a consumer with a transactional producer in a consume-transform-produce pattern, also known as exactly-once processing. It means that an application consumes messages, processes them, publishes the results to a topic, and commits offsets of the consumed messages in a transaction.
The PulsarTransactions
emitter also provides a way to apply exactly-once processing to an incoming Pulsar message inside a transaction.
The following example includes a batch of Pulsar messages inside a transaction.
mp.messaging.outgoing.tx-out-example.enableTransaction=true
# ...
mp.messaging.incoming.in-channel.enableTransaction=true
mp.messaging.incoming.in-channel.batchReceive=true
package pulsar.outbound;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.inject.Inject;
import org.apache.pulsar.client.api.Messages;
import org.eclipse.microprofile.reactive.messaging.Channel;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Message;
import io.smallrye.mutiny.Uni;
import io.smallrye.reactive.messaging.pulsar.transactions.PulsarTransactions;
@ApplicationScoped
public class PulsarExactlyOnceProcessor {
@Inject
@Channel("tx-out-example")
PulsarTransactions<Integer> txProducer;
@Incoming("in-channel")
public Uni<Void> emitInTransaction(Message<Messages<Integer>> batch) {
return txProducer.withTransactionAndAck(batch, emitter -> {
for (org.apache.pulsar.client.api.Message<Integer> record : batch.getPayload()) {
emitter.send(PulsarMessage.of(record.getValue() + 1, record.getKey()));
}
return Uni.createFrom().voidItem();
});
}
}
If the processing completes successfully, the message is acknowledged inside the transaction and the transaction is committed.
When using exactly-once processing, messages can only be acked individually rather than cumulatively. |
If the processing needs to abort, the message is nack’ed. One of the failure strategies can be employed in order to retry the processing or simply fail-stop.
Note that the Uni
returned from the withTransaction
will yield a failure if the transaction fails and is aborted.
The application can choose to handle the error case, but for the message consumption to continue, Uni
returned from the @Incoming
method must not result in failure.
PulsarTransactions#withTransactionAndAck
method will ack and nack the message but will not stop the reactive stream.
Ignoring the failure simply resets the consumer to the last committed offsets and resumes the processing from there.
In order to avoid duplicates in case of failure, it is recommended to enable message deduplication and batch index level acknowledgment on the broker side:
|
7. Pulsar Schema Configuration & Auto Schema Discovery
Pulsar messages are stored with payloads as unstructured byte array. A Pulsar schema defines how to serialize structured data to the raw message bytes. The schema is applied in producers and consumers to write and read with an enforced data structure. It serializes data into raw bytes before they are published to a topic and deserializes the raw bytes before they are delivered to consumers.
Pulsar uses a schema registry as a central repository to store the registered schema information, which enables producers/consumers to coordinate the schema of a topic’s messages through brokers. By default the Apache BookKeeper is used to store schemas.
Pulsar API provides built-in schema information for a number of primitive types and complex types such as Key/Value, Avro and Protobuf.
The Pulsar Connector allows specifying the schema as a primitive type using the schema
property:
mp.messaging.incoming.prices.connector=smallrye-pulsar
mp.messaging.incoming.prices.schema=INT32
mp.messaging.outgoing.prices-out.connector=smallrye-pulsar
mp.messaging.outgoing.prices-out.schema=DOUBLE
If the value for the schema
property matches a Schema Type
a simple schema will be created with that type and will be used for that channel.
The Pulsar Connector allows configuring complex schema types by providing Schema
beans through CDI, identified with the @Identifier
qualifier.
For example the following bean provides an JSON schema and a Key/Value schema:
package pulsar.configuration;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.inject.Produces;
import org.apache.pulsar.client.api.Schema;
import org.apache.pulsar.common.schema.KeyValue;
import org.apache.pulsar.common.schema.KeyValueEncodingType;
import io.smallrye.common.annotation.Identifier;
@ApplicationScoped
public class PulsarSchemaProvider {
@Produces
@Identifier("user-schema")
Schema<User> userSchema = Schema.JSON(User.class);
@Produces
@Identifier("a-channel")
Schema<KeyValue<Integer, User>> keyValueSchema() {
return Schema.KeyValue(Schema.INT32, Schema.JSON(User.class), KeyValueEncodingType.SEPARATED);
}
public static class User {
String name;
int age;
}
}
To configure the incoming channel users
with defined schema, you need to set the schema
property to the identifier of the schema user-schema
:
mp.messaging.incoming.users.connector=smallrye-pulsar
mp.messaging.incoming.users.schema=user-schema
If no schema
property is found, the connector looks for Schema
beans identified with the channel name.
For example, the outgoing channel a-channel
will use the key/value schema.
mp.messaging.outgoing.a-channel.connector=smallrye-pulsar
If no schema information is provided incoming channels will use Schema.AUTO_CONSUME()
, whereas outgoing channels will use Schema.AUTO_PRODUCE_BYTES()
schemas.
7.1. Auto Schema Discovery
When using Quarkus Messaging Pulsar (io.quarkus:quarkus-messaging-pulsar
), Quarkus can often automatically detect the correct Pulsar Schema to configure.
This autodetection is based on declarations of @Incoming
and @Outgoing
methods, as well as injected @Channel
s.
Por exemplo, se você declarar
@Outgoing("generated-price")
public Multi<Integer> generate() {
...
}
and your configuration indicates that the generated-price
channel uses the smallrye-pulsar
connector, then Quarkus will automatically set the schema
attribute of the generated-price
channel to Pulsar Schema INT32
.
Da mesma forma, se você declarar
@Incoming("my-pulsar-consumer")
public void consume(org.apache.pulsar.api.client.Message<byte[]> record) {
...
}
and your configuration indicates that the my-pulsar-consumer
channel uses the smallrye-pulsar
connector, then Quarkus will automatically set the schema
attribute to Pulsar BYTES
Schema.
Finalmente, se você declarar
@Inject
@Channel("price-create")
Emitter<Double> priceEmitter;
and your configuration indicates that the price-create
channel uses the smallrye-pulsar
connector, then Quarkus will automatically set the schema
to Pulsar INT64
Schema.
The full set of types supported by the Pulsar Schema autodetection is:
-
short
ejava.lang.Short
-
int
ejava.lang.Integer
-
long
ejava.lang.Long
-
float
ejava.lang.Float
-
double
ejava.lang.Double
-
byte[]
-
java.time.Instant
-
java.sql.Timestamp
-
java.time.LocalDate
-
java.time.LocalTime
-
java.time.LocalDateTime
-
java.nio.ByteBuffer
-
classes generated from Avro schemas, as well as Avro
GenericRecord
, will be configured withAVRO
schema type -
classes generated from Protobuf schemas, will be configured with
PROTOBUF
schema type -
other classes will automatically be configured with
JSON
schema type
Note that |
In addition to those Pulsar-provided schemas, Quarkus provides following schema implementations without enforcing validation :
-
io.vertx.core.buffer.Buffer
will be configured withio.quarkus.pulsar.schema.BufferSchema
schema -
io.vertx.core.json.JsonObject
will be configured withio.quarkus.pulsar.schema.JsonObjectSchema
schema -
io.vertx.core.json.JsonArray
will be configured withio.quarkus.pulsar.schema.JsonArraySchema
schema -
For schema-less Json serialization, if the
schema
configuration is set toObjectMapper<fully_qualified_name_of_the_bean>
, a Schema will be generated using the JacksonObjectMapper
, without enforcing a Pulsar Schema validation.io.quarkus.pulsar.schema.ObjectMapperSchema
can be used to explicitly configure JSON schema without validation.
If a schema
is set by configuration, it won’t be replaced by the auto-detection.
In case you have any issues with serializer auto-detection, you can switch it off completely by setting quarkus.messaging.pulsar.serializer-autodetection.enabled=false
.
If you find you need to do this, please file a bug in the Quarkus issue tracker so we can fix whatever problem you have.
8. Dev Services para Pulsar
With Quarkus Messaging Pulsar extension (quarkus-messaging-pulsar
)
Dev Services for Pulsar automatically starts a Pulsar broker in dev mode and when running tests.
So, you don’t have to start a broker manually.
The application is configured automatically.
8.1. Ativando / Desativando Dev Services para o Pulsar
Os Dev services para Pulsar são ativados automaticamente, a menos que:
-
quarkus.pulsar.devservices.enabled
é definido comofalse
-
o
pulsar.client.serviceUrl
está configurado -
todos os canais Pulsar de mensagens reativas têm o atributo
serviceUrl
definido
Dev Services para a Pulsar dependem do Docker para iniciar o agente. Se o seu ambiente não for compatível com o Docker, você precisará iniciar o agente manualmente ou conectar-se a um agente já em execução. Você pode configurar o endereço do agente usando pulsar.client.
.
8.2. Broker partilhado
Na maioria das vezes, você precisa compartilhar o broker entre os aplicativos. O Dev Services para Pulsar implementa um mecanismo de descoberta de serviços para que seus vários aplicativos Quarkus em execução no modo de desenvolvimento compartilhem um único broker.
O Dev Services para Pulsar inicia o contêiner com a etiqueta quarkus-dev-service-pulsar que é utilizada para identificar o contêiner.
|
Se precisar de vários brokers (compartilhados), você pode configurar o atributo quarkus.pulsar.devservices.service-name
e indicar o nome do broker. Ele procura um contêiner com o mesmo valor ou inicia um novo se nenhum for encontrado. O nome do serviço padrão é pulsar
.
O compartilhamento é ativado por padrão no modo de desenvolvimento, mas desativado no modo de teste. Você pode desativar o compartilhamento com quarkus.pulsar.devservices.shared=false
.
8.3. Definindo a porta
Por padrão, o Dev Services para Pulsar escolhe uma porta aleatória e configura o aplicativo. Você pode definir a porta configurando a propriedade quarkus.pulsar.devservices.port
.
Note que o endereço anunciado pelo Pulsar é automaticamente configurado com a porta escolhida.
8.4. Configurando a imagem
O Dev Services para Pulsar suporta a imagem oficial do Apache Pulsar.
Um nome de imagem personalizado pode ser configurado. Por exemplo:
quarkus.pulsar.devservices.image-name=datastax/lunastreaming-all:2.10_4.7
8.5. Configurar o broker Pulsar
É possível configurar o Dev Services para a Pulsar com a configuração personalizada do broker.
O exemplo seguinte ativa o suporte de transação:
quarkus.pulsar.devservices.broker-config.transaction-coordinator-enabled=true
quarkus.pulsar.devservices.broker-config.system-topic-enabled=true
9. Configuring Pulsar clients
Pulsar clients, consumers and producers are very customizable to configure how a Pulsar client application behaves.
The Pulsar connector creates a Pulsar client and, a consumer or a producer per channel, each with sensible defaults to ease their configuration. Although the creation is handled, all available configuration options remain configurable through Pulsar channels.
While idiomatic way of creating PulsarClient
, PulsarConsumer
or PulsarProducer
are through builder APIs, in its essence
those APIs build each time a configuration object, to pass onto the implementation.
Those are ClientConfigurationData,
ConsumerConfigurationData
and ProducerConfigurationData.
Pulsar Connector allows receiving properties for those configuration objects directly.
For example, the broker authentication information for PulsarClient
is received using authPluginClassName
and authParams
properties.
In order to configure the authentication for the incoming channel data
:
mp.messaging.incoming.data.connector=smallrye-pulsar
mp.messaging.incoming.data.serviceUrl=pulsar://localhost:6650
mp.messaging.incoming.data.topic=topic
mp.messaging.incoming.data.subscriptionInitialPosition=Earliest
mp.messaging.incoming.data.schema=INT32
mp.messaging.incoming.data.authPluginClassName=org.apache.pulsar.client.impl.auth.AuthenticationBasic
mp.messaging.incoming.data.authParams={"userId":"superuser","password":"admin"}
Note that the Pulsar consumer property subscriptionInitialPosition
is also configured with the Earliest
value which represents with enum value SubscriptionInitialPosition.Earliest
.
This approach covers most of the configuration cases.
However, non-serializable objects such as CryptoKeyReader
, ServiceUrlProvider
etc. cannot be configured this way.
The Pulsar Connector allows taking into account instances of Pulsar configuration data objects –
ClientConfigurationData
, ConsumerConfigurationData
, ProducerConfigurationData
:
import jakarta.enterprise.inject.Produces;
import io.smallrye.common.annotation.Identifier;
import org.apache.pulsar.client.impl.conf.ConsumerConfigurationData;
class PulsarConfig {
@Produces
@Identifier("my-consumer-options")
public ConsumerConfigurationData<String> getConsumerConfig() {
ConsumerConfigurationData<String> data = new ConsumerConfigurationData<>();
data.setAckReceiptEnabled(true);
data.setCryptoKeyReader(DefaultCryptoKeyReader.builder()
//...
.build());
return data;
}
}
This instance is retrieved and used to configure the client used by the connector.
You need to indicate the name of the client using the client-configuration
, consumer-configuration
or producer-configuration
attributes:
mp.messaging.incoming.prices.consumer-configuration=my-consumer-options
If no [client|consumer|producer]-configuration
is configured, the connector will look for instances identified with the channel name:
import jakarta.enterprise.inject.Produces;
import io.smallrye.common.annotation.Identifier;
import org.apache.pulsar.client.impl.AutoClusterFailover;
import org.apache.pulsar.client.impl.conf.ClientConfigurationData;
class PulsarConfig {
@Produces
@Identifier("prices")
public ClientConfigurationData getClientConfig() {
ClientConfigurationData data = new ClientConfigurationData();
data.setEnableTransaction(true);
data.setServiceUrlProvider(AutoClusterFailover.builder()
// ...
.build());
return data;
}
}
You also can provide a Map<String, Object>
containing configuration values by key:
import jakarta.enterprise.inject.Produces;
import io.smallrye.common.annotation.Identifier;
import org.apache.pulsar.client.api.BatcherBuilder;
import org.apache.pulsar.client.impl.conf.ClientConfigurationData;
import org.apache.pulsar.client.impl.customroute.PartialRoundRobinMessageRouterImpl;
import java.util.Map;
class PulsarConfig {
@Produces
@Identifier("prices")
public Map<String, Object> getProducerConfig() {
return Map.of(
"batcherBuilder", BatcherBuilder.KEY_BASED,
"sendTimeoutMs", 3000,
"customMessageRouter", new PartialRoundRobinMessageRouterImpl(4));
}
}
Different configuration sources are loaded in the following order of precedence, from the least important to the highest:
-
Map<String, Object>
config map produced with default config identifier,default-pulsar-client
,default-pulsar-consumer
,default-pulsar-producer
. -
Map<String, Object>
config map produced with identifier in the configuration or channel name -
[Client|Producer|Consuemr]ConfigurationData
object produced with identifier in the channel configuration or the channel name -
Channel configuration properties named with
[Client|Producer|Consuemr]ConfigurationData
field names.
See Referência de configuração for the exhaustive list of configuration options.
9.1. Configuring Pulsar Authentication
Pulsar provides a pluggable authentication framework, and Pulsar brokers/proxies use this mechanism to authenticate clients.
Clients can be configured in application.properties
file using authPluginClassName
and authParams
attributes:
pulsar.client.serviceUrl=pulsar://pulsar:6650
pulsar.client.authPluginClassName=org.apache.pulsar.client.impl.auth.AuthenticationBasic
pulsar.client.authParams={"userId":"superuser","password":"admin"}
Or programmatically:
import java.util.Map;
import jakarta.enterprise.inject.Produces;
import io.smallrye.common.annotation.Identifier;
import org.apache.pulsar.client.impl.conf.ClientConfigurationData;
import org.apache.pulsar.client.impl.auth.AuthenticationBasic;
class PulsarConfig {
@Produces
@Identifier("prices")
public ClientConfigurationData config() {
var data = new ClientConfigurationData();
var auth = new AuthenticationBasic();
auth.configure(Map.of("userId", "superuser", "password", "admin"));
data.setAuthentication(auth);
return data;
}
}
9.1.1. Configuring authentication to Pulsar using mTLS
Pulsar Messaging extension integrates with the Quarkus TLS registry to authenticate clients using mTLS.
To configure the mTLS for a Pulsar channel, you need to provide a named TLS configuration in the application.properties
:
quarkus.tls.my-tls-config.trust-store.p12.path=target/certs/pulsar-client-truststore.p12
quarkus.tls.my-tls-config.trust-store.p12.password=secret
quarkus.tls.my-tls-config.key-store.p12.path=target/certs/pulsar-client-keystore.p12
quarkus.tls.my-tls-config.key-store.p12.password=secret
mp.messaging.incoming.prices.tls-configuration-name=my-tls-config
9.1.2. Configuring access to Datastax Luna Streaming
Luna Streaming is a production-ready distribution of Apache Pulsar, with tools and support from DataStax. After creating your DataStax Luna Pulsar tenant, note the auto generated token, and configure the token authentication:
pulsar.client.serviceUrl=pulsar+ssl://pulsar-aws-eucentral1.streaming.datastax.com:6651
pulsar.client.authPluginClassName=org.apache.pulsar.client.impl.auth.AuthenticationToken
pulsar.client.authParams=token:eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjE2ODY4MTc4MzQsImlzcyI6ImRhdGFzdGF4Iiwic3ViIjoiY2xpZW50OzA3NGZhOTI4LThiODktNDBhNC04MDEzLWNlNjVkN2JmZWIwZTtjSEpwWTJWejsyMDI5ODdlOGUyIiwidG9rZW5pZCI6IjIwMjk4N2U4ZTIifQ....
Make sure to create topics beforehand, or enable the Auto Topic Creation in the namespace configuration.
Note that the topic configuration needs to reference full name of topics:
mp.messaging.incoming.prices.topic=persistent://my-tenant/default/prices
9.1.3. Configuring access to StreamNative Cloud
StreamNative Cloud is a fully managed Pulsar-as-a-Service available in different deployment options, whether it is fully-hosted, on a public cloud but managed by StreamNative or self-managed on Kubernetes.
The StreamNative Pulsar clusters use Oauth2 authentication, so you need to make sure that a service account exists with required permissions to the Pulsar namespace/topic your application is using.
Next, you need to download the Key file (which serves as private key) of the service account and note the issuer URL (typically https://auth.streamnative.cloud/
)
and the audience (for example urn:sn:pulsar:o-rf3ol:redhat
) for your cluster.
The Pulsar Clients page in the Admin section in the StreamNative Cloud console helps you with this process.
To configure your application with Pulsar Oauth2 authentication:
pulsar.tenant=public
pulsar.namespace=default
pulsar.client.serviceUrl=pulsar+ssl://quarkus-71eaadbf-a6f3-4355-85d2-faf436b23d86.aws-euc1-prod-snci-pool-slug.streamnative.aws.snio.cloud:6651
pulsar.client.authPluginClassName=org.apache.pulsar.client.impl.auth.oauth2.AuthenticationOAuth2
pulsar.client.authParams={"type":"client_credentials","privateKey":"data:application/json;base64,<base64-encoded value>","issuerUrl":"https://auth.streamnative.cloud/","audience":"urn:sn:pulsar:o-rfwel:redhat"}
Note that the pulsar.client.authParams
configuration contains a Json string with issuerUrl
, audience
and the privateKey
in the data:application/json;base64,<base64-encoded-key-file>
format.
Alternatively you can configure the authentication programmatically:
package org.acme.pulsar;
import java.net.MalformedURLException;
import java.net.URL;
import org.apache.pulsar.client.impl.auth.oauth2.AuthenticationFactoryOAuth2;
import org.apache.pulsar.client.impl.conf.ClientConfigurationData;
import org.eclipse.microprofile.config.inject.ConfigProperty;
import io.smallrye.common.annotation.Identifier;
import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.inject.Produces;
@ApplicationScoped
public class PulsarAuth {
@ConfigProperty(name = "pulsar.issuerUrl")
String issuerUrl;
@ConfigProperty(name = "pulsar.credentials")
String credentials;
@ConfigProperty(name = "pulsar.audience")
String audience;
@Produces
@Identifier("pulsar-auth")
public ClientConfigurationData pulsarClientConfig() throws MalformedURLException {
var data = new ClientConfigurationData();
data.setAuthentication(AuthenticationFactoryOAuth2.clientCredentials(new URL(issuerUrl), PulsarAuth.class.getResource(credentials), audience));
return data;
}
}
This assumes that the key file is included to the application classpath as a resource, then the configuration would like the following:
mp.messaging.incoming.prices.client-configuration=pulsar-auth
pulsar.tenant=public
pulsar.namespace=default
pulsar.client.serviceUrl=pulsar+ssl://quarkus-71eaadbf-a6f3-4355-85d2-faf436b23d86.aws-euc1-prod-snci-pool-slug.streamnative.aws.snio.cloud:6651
pulsar.issuerUrl=https://auth.streamnative.cloud/
pulsar.audience=urn:sn:pulsar:o-rfwel:redhat
pulsar.credentials=/o-rfwel-quarkus-app.json
Note that channels using the client configuration identified with pulsar-auth
need to set the client-configuration
attribute.
10. Verificações de Integridade
The Quarkus extension reports startup, readiness and liveness of each channel managed by the Pulsar connector. Health checks rely on the Pulsar client to verify that a connection is established with the broker.
Startup and Readiness probes for both inbound and outbound channels report OK when the connection with the broker is established.
The Liveness probe for both inbound and outbound channels reports OK when the connection is established with the broker AND that no failures have been caught.
Note that a message processing failures nacks the message which is
then handled by the failure-strategy. It is the responsibility of the
failure-strategy to report the failure and influence the outcome of the
liveness checks. The fail
failure strategy reports the failure and so
the liveness check will report the failure.
11. Referência de configuração
Following are the list of configuration attributes for the Pulsar connector channels, consumers, producers and clients. See the Pulsar Client Configuration for more information on how the Pulsar clients are configured.
11.1. Incoming channel configuration (receiving from Pulsar)
Os seguintes atributos são configurados utilizando:
mp.messaging.incoming.your-channel-name.attribute=value
Atributo (alias) | Descrição | Tipo | Obrigatório | Padrão |
---|---|---|---|---|
ack-strategy |
Especifique a estratégia de confirmação a ser aplicada quando uma mensagem produzida a partir de um registro for reconhecida. Os valores podem ser 'ack', 'cumulativos'. |
string |
falso |
|
ackTimeout.redeliveryBackoff |
Valores separados por vírgulas para configurar o tempo limite do ack MultiplierRedeliveryBackoff, min delay, max delay, multiplicador. |
string |
falso |
|
batchReceive |
Se o recebimento em lote é usado para consumir mensagens |
boolean |
falso |
|
client-configuration |
Identificador de um bean CDI que fornece a configuração padrão do cliente Pulsar para esse canal. A configuração do canal ainda pode substituir qualquer atributo. O bean deve ter um tipo de Map<String, Object> e deve usar o qualificador @io.smallrye.common.annotation.Identifier para definir o identificador. |
string |
falso |
|
consumer-configuration |
Identificador de um bean CDI que fornece a configuração padrão do consumidor Pulsar para esse canal. A configuração do canal ainda pode substituir qualquer atributo. O bean deve ter um tipo de Map<String, Object> e deve usar o qualificador @io.smallrye.common.annotation.Identifier para definir o identificador. |
string |
falso |
|
deadLetterPolicy.deadLetterTopic |
Nome do tópico de dead letter para onde as mensagens com falha serão enviadas |
string |
falso |
|
deadLetterPolicy.initialSubscriptionName |
Nome do nome da assinatura inicial do tópico de dead letter |
string |
falso |
|
deadLetterPolicy.maxRedeliverCount |
Número máximo de vezes que uma mensagem será entregue novamente antes de ser enviada para o tópico de letra morta |
int |
falso |
|
deadLetterPolicy.retryLetterTopic |
Nome do tópico de repetição para onde as mensagens com falha serão enviadas |
string |
falso |
|
failure-strategy |
Especifique a estratégia de falha a ser aplicada quando uma mensagem produzida a partir de um registro for reconhecida negativamente (nack). Os valores podem ser 'nack' (padrão), 'fail', 'ignore' ou 'reconsume-later |
string |
falso |
|
health-enabled |
Se o relatório de integridade está habilitado (padrão) ou desabilitado |
boolean |
falso |
|
negativeAck.redeliveryBackoff |
Valores separados por vírgulas para configurar o ack negativo MultiplierRedeliveryBackoff, min delay, max delay, multiplicador. |
string |
falso |
|
reconsumeLater.delay |
Atraso padrão para estratégia de falha de reconsumo, em segundos |
long |
falso |
|
schema |
O tipo de esquema Pulsar deste canal. Quando configurado, um esquema é criado com o SchemaType fornecido e usado para o canal. Quando ausente, o esquema é resolvido procurando um bean CDI digitado 'Esquema' qualificado com '@Identifier' e o nome do canal. Como fallback AUTO_CONSUME ou AUTO_PRODUCE são usados. |
string |
falso |
|
serviceUrl |
A URL do serviço Pulsar |
string |
falso |
|
topic |
O tópico Pulsar consumido/povoado. Se não estiver definido, o nome do canal será usado |
string |
falso |
|
tracing-enabled |
Se o rastreamento está habilitado (padrão) ou desabilitado |
boolean |
falso |
|
You can also configure properties supported by the underlying Pulsar consumer.
These properties can also be globally configured using pulsar.consumer
prefix:
pulsar.consumer.subscriptionInitialPosition=Earliest
Atributo | Descrição | Tipo | Arquivo de configuração | Padrão |
---|---|---|---|---|
topicNames |
Nome do tópico |
Conjunto |
true |
[] |
topicsPattern |
Padrão de tópico |
Padrão |
true |
|
subscriptionName |
Nome da assinatura |
String |
true |
|
subscriptionType |
Tipo de assinatura. |
SubscriptionType |
true |
Exclusive |
subscriptionProperties |
Map |
true |
||
subscriptionMode |
SubscriptionMode |
true |
Durable |
|
messageListener |
MessageListener |
falso |
||
consumerEventListener |
ConsumerEventListener |
falso |
||
negativeAckRedeliveryBackoff |
Interface para mensagem personalizada é política negativeAcked. Você pode especificar 'RedeliveryBackoff' para um consumidor. |
RedeliveryBackoff |
falso |
|
ackTimeoutRedeliveryBackoff |
Interface para mensagem personalizada é a política ackTimeout. Você pode especificar 'RedeliveryBackoff' para um consumidor. |
RedeliveryBackoff |
falso |
|
receiverQueueSize |
Tamanho da fila de destinatários de um consumidor. |
int |
true |
1000 |
acknowledgementsGroupTimeMicros |
Agrupe uma confirmação de consumidor por um tempo especificado. |
long |
true |
100000 |
maxAcknowledgmentGroupSize |
Agrupe uma confirmação de consumidor para o número de mensagens. |
int |
true |
1000 |
negativeAckRedeliveryDelayMicros |
Atraso para aguardar antes de entregar novamente as mensagens que não puderam ser processadas. |
long |
true |
60000000 |
maxTotalReceiverQueueSizeAcrossPartitions |
O tamanho máximo total da fila do receptor nas partições. |
int |
true |
50000 |
consumerName |
Nome do consumidor |
String |
true |
|
ackTimeoutMillis |
Tempo limite de mensagens não acked |
long |
true |
0 |
tickDurationMillis |
Granularidade da reentrega do tempo limite de ack. |
long |
true |
1000 |
priorityLevel |
Nível de prioridade para um consumidor ao qual um corretor dá mais prioridade ao enviar mensagens no tipo de assinatura compartilhada. A ordem em que um corretor envia mensagens para os consumidores é: C1, C2, C3, C1, C4, C5, C4. |
int |
true |
0 |
maxPendingChunkedMessage |
O tamanho máximo de uma fila que contém mensagens em partes pendentes. Quando o limite é atingido, o consumidor descarta mensagens pendentes para otimizar a utilização da memória. |
int |
true |
10 |
autoAckOldestChunkedMessageOnQueueFull |
Se as mensagens em bloco pendentes devem ser confirmadas automaticamente quando o limite de 'maxPendingChunkedMessage' for atingido. Se definido como 'false', essas mensagens serão reentregues pelo corretor. |
boolean |
true |
falso |
expireTimeOfIncompleteChunkedMessageMillis |
O intervalo de tempo para expirar blocos incompletos se um consumidor não receber todos os blocos no período de tempo especificado. O valor padrão é 1 minuto. |
long |
true |
60000 |
cryptoKeyReader |
CryptoKeyReader |
falso |
||
messageCrypto |
MessageCrypto |
falso |
||
cryptoFailureAction |
O consumidor deve agir quando receber uma mensagem que não pode ser descriptografada. A descompactação da mensagem falha. Se as mensagens contiverem mensagens em lote, um cliente não poderá recuperar mensagens individuais em lote. A mensagem criptografada entregue contém 'EncryptionContext' que contém informações de criptografia e compactação usando qual aplicativo pode descriptografar a carga útil da mensagem consumida. |
ConsumerCryptoFailureAction |
true |
FAIL |
properties |
Um nome ou propriedade de valor desse consumidor. 'propriedades' são metadados definidos pelo aplicativo anexados a um consumidor. Ao obter estatísticas de tópico, associe esses metadados às estatísticas do consumidor para facilitar a identificação. |
SortedMap |
true |
{} |
readCompacted |
Se habilitar 'readCompacted', um consumidor lerá mensagens de um tópico compactado em vez de ler uma lista de pendências de mensagens completa de um tópico. Um consumidor só vê o valor mais recente para cada chave no tópico compactado, até chegar ao ponto na mensagem de tópico ao compactar a lista de pendências. Além desse ponto, envie mensagens normalmente. Habilitar apenas 'readCompacted' em assinaturas de tópicos persistentes, que tenham um único consumidor ativo (como falha ou assinaturas exclusivas). A tentativa de habilitá-lo em assinaturas de tópicos não persistentes ou em assinaturas compartilhadas leva a uma chamada de assinatura lançando um 'PulsarClientException'. |
boolean |
true |
falso |
subscriptionInitialPosition |
Posição inicial na qual definir o cursor ao se inscrever em um tópico pela primeira vez. |
SubscriptionInitialPosition |
true |
Latest |
patternAutoDiscoveryPeriod |
Período de descoberta automática de tópicos ao usar um padrão para o consumidor do tópico. O valor padrão e mínimo é 1 minuto. |
int |
true |
60 |
regexSubscriptionMode |
Ao assinar um tópico usando uma expressão regular, você pode escolher um determinado tipo de tópicos. * PersistentOnly: inscreva-se apenas em tópicos persistentes. |
RegexSubscriptionMode |
true |
PersistentOnly |
deadLetterPolicy |
Política de dead letter para os consumidores. Por padrão, algumas mensagens provavelmente são reentregues muitas vezes, até mesmo na medida em que nunca param. Usando o mecanismo de dead letter, as mensagens têm a contagem máxima de reentrega. Ao exceder o número máximo de reentregas, as mensagens são enviadas para o Tópico de Dead Letter e reconhecidas automaticamente. Você pode ativar o mecanismo de letra morta definindo 'deadLetterPolicy'. Ao especificar a política de dead letter enquanto não especifica 'ackTimeoutMillis', você pode definir o tempo limite de ack para 30000 milissegundos. |
DeadLetterPolicy |
true |
|
retryEnable |
boolean |
true |
falso |
|
batchReceivePolicy |
BatchReceivePolicy |
falso |
||
autoUpdatePartitions |
If Note: this is only for partitioned consumers. |
boolean |
true |
true |
autoUpdatePartitionsIntervalSeconds |
long |
true |
60 |
|
replicateSubscriptionState |
Se 'replicateSubscriptionState' estiver habilitado, um estado de assinatura será replicado para clusters replicados geograficamente. |
boolean |
true |
falso |
resetIncludeHead |
boolean |
true |
falso |
|
keySharedPolicy |
KeySharedPolicy |
falso |
||
batchIndexAckEnabled |
boolean |
true |
falso |
|
ackReceiptEnabled |
boolean |
true |
falso |
|
poolMessages |
boolean |
true |
falso |
|
payloadProcessor |
MessagePayloadProcessor |
falso |
||
startPaused |
boolean |
true |
falso |
|
autoScaledReceiverQueueSizeEnabled |
boolean |
true |
falso |
|
topicConfigurations |
List |
true |
[] |
11.2. Outgoing channel configuration (publishing to Pulsar)
Atributo (alias) | Descrição | Tipo | Obrigatório | Padrão |
---|---|---|---|---|
client-configuration |
Identificador de um bean CDI que fornece a configuração padrão do cliente Pulsar para esse canal. A configuração do canal ainda pode substituir qualquer atributo. O bean deve ter um tipo de Map<String, Object> e deve usar o qualificador @io.smallrye.common.annotation.Identifier para definir o identificador. |
string |
falso |
|
health-enabled |
Se o relatório de integridade está habilitado (padrão) ou desabilitado |
boolean |
falso |
|
maxPendingMessages |
O tamanho máximo de uma fila que contém mensagens pendentes, ou seja, mensagens aguardando para receber uma confirmação de um broker |
int |
falso |
|
producer-configuration |
Identificador de um bean CDI que fornece a configuração padrão do produtor Pulsar para esse canal. A configuração do canal ainda pode substituir qualquer atributo. O bean deve ter um tipo de Map<String, Object> e deve usar o qualificador @io.smallrye.common.annotation.Identifier para definir o identificador. |
string |
falso |
|
schema |
O tipo de esquema Pulsar deste canal. Quando configurado, um esquema é criado com o SchemaType fornecido e usado para o canal. Quando ausente, o esquema é resolvido procurando um bean CDI digitado 'Esquema' qualificado com '@Identifier' e o nome do canal. Como fallback AUTO_CONSUME ou AUTO_PRODUCE são usados. |
string |
falso |
|
serviceUrl |
A URL do serviço Pulsar |
string |
falso |
|
topic |
O tópico Pulsar consumido/populado. Se não estiver definido, o nome do canal será usado |
string |
falso |
|
tracing-enabled |
Se o rastreamento está habilitado (padrão) ou desabilitado |
boolean |
falso |
|
waitForWriteCompletion |
Se o cliente espera que o broker reconheça o registro escrito antes de reconhecer a mensagem |
boolean |
falso |
|
You can also configure properties supported by the underlying Pulsar producer.
These properties can also be globally configured using pulsar.producer
prefix:
pulsar.producer.batchingEnabled=false
Atributo | Descrição | Tipo | Arquivo de configuração | Padrão |
---|---|---|---|---|
topicName |
Nome do tópico |
String |
true |
|
producerName |
Nome do produtor |
String |
true |
|
sendTimeoutMs |
Tempo limite de envio de mensagem em ms. |
long |
true |
30000 |
blockIfQueueFull |
Se estiver definido como 'true', quando a fila de mensagens de saída estiver cheia, os métodos 'Send' e 'SendAsync' do produtor bloqueiam, em vez de falhar e lançar erros. O parâmetro 'MaxPendingMessages' determina o tamanho da fila de mensagens de saída. |
boolean |
true |
falso |
maxPendingMessages |
O tamanho máximo de uma fila que contém mensagens pendentes. Por exemplo, uma mensagem aguardando para receber uma confirmação de um broker. Por padrão, quando a fila está cheia, todas as chamadas para os métodos 'Send' e 'SendAsync' falham **a menos que você defina 'BlockIfQueueFull' como 'true'. |
int |
true |
0 |
maxPendingMessagesAcrossPartitions |
O número máximo de mensagens pendentes entre partições. Use a configuração para diminuir o máximo de mensagens pendentes para cada partição ('#setMaxPendingMessages(int)') se o número total exceder o valor configurado. |
int |
true |
0 |
messageRoutingMode |
Lógica de roteamento de mensagens para produtores em partitioned topics. |
MessageRoutingMode |
true |
|
hashingScheme |
Função de hash que determina a partição onde você publica uma mensagem específica (somente tópicos particionados). |
HashingScheme |
true |
JavaStringHash |
cryptoFailureAction |
O produtor deve tomar medidas quando a criptografia falhar. |
ProducerCryptoFailureAction |
true |
FAIL |
customMessageRouter |
MessageRouter |
falso |
||
batchingMaxPublishDelayMicros |
Período de tempo de envio de mensagens em lote. |
long |
true |
1000 |
batchingPartitionSwitchFrequencyByPublishDelay |
int |
true |
10 |
|
batchingMaxMessages |
O número máximo de mensagens permitidas em um lote. |
int |
true |
1000 |
batchingMaxBytes |
int |
true |
131072 |
|
batchingEnabled |
Habilite o envio em lote de mensagens. |
boolean |
true |
true |
batcherBuilder |
BatcherBuilder |
falso |
||
chunkingEnabled |
Habilite o fragmento de mensagens. |
boolean |
true |
falso |
chunkMaxMessageSize |
int |
true |
-1 |
|
cryptoKeyReader |
CryptoKeyReader |
falso |
||
messageCrypto |
MessageCrypto |
falso |
||
encryptionKeys |
Conjunto |
true |
[] |
|
compressionType |
Tipo de compactação de dados de mensagem usado por um produtor. |
CompressionType |
true |
NONE |
initialSequenceId |
Long |
true |
||
autoUpdatePartitions |
boolean |
true |
true |
|
autoUpdatePartitionsIntervalSeconds |
long |
true |
60 |
|
multiSchema |
boolean |
true |
true |
|
accessMode |
ProducerAccessMode |
true |
Shared |
|
lazyStartPartitionedProducers |
boolean |
true |
falso |
|
properties |
SortedMap |
true |
{} |
|
initialSubscriptionName |
Use essa configuração para criar automaticamente uma assinatura inicial ao criar um tópico. Se esse campo não estiver definido, a assinatura inicial não será criada. |
String |
true |
11.3. Pulsar Client Configuration
Following is the configuration reference for the underlying PulsarClient
.
These options can be configured using the channel attribute:
mp.messaging.incoming.your-channel-name.numIoThreads=4
Or configured globally using pulsar.client
prefix:
pulsar.client.serviceUrl=pulsar://pulsar:6650
Atributo | Descrição | Tipo | Arquivo de configuração | Padrão |
---|---|---|---|---|
serviceUrl |
URL HTTP do cluster pulsar para se conectar a um broker. |
String |
true |
|
serviceUrlProvider |
A classe de implementação de ServiceUrlProvider usada para gerar ServiceUrl. |
ServiceUrlProvider |
falso |
|
authentication |
Configurações de autenticação do cliente. |
Autenticação |
falso |
|
authPluginClassName |
Nome da classe do plugin de autenticação do cliente. |
String |
true |
|
authParams |
Parâmetro de autenticação do cliente. |
String |
true |
|
authParamMap |
Mapa de autenticação do cliente. |
Map |
true |
|
operationTimeoutMs |
Tempo limite da operação do cliente (em milissegundos). |
long |
true |
30000 |
lookupTimeoutMs |
Tempo limite de pesquisa do cliente (em milissegundos). |
long |
true |
-1 |
statsIntervalSeconds |
Intervalo para imprimir estatísticas do cliente (em segundos). |
long |
true |
60 |
numIoThreads |
Número de threads de E/S. |
int |
true |
10 |
numListenerThreads |
Número de threads de consumer listeners. |
int |
true |
10 |
connectionsPerBroker |
Número de conexões estabelecidas entre o cliente e cada Broker. Um valor 0 significa desabilitar o pool de conexões. |
int |
true |
1 |
connectionMaxIdleSeconds |
Solte a conexão se ela não for usada por mais de [connectionMaxIdleSeconds] segundos. Se [connectionMaxIdleSeconds] < 0, desabilitado o recurso que libera automaticamente as conexões ociosas |
int |
true |
180 |
useTcpNoDelay |
Se deve usar a opção TCP NoDelay. |
boolean |
true |
true |
useTls |
Se deve usar TLS. |
boolean |
true |
falso |
tlsKeyFilePath |
Caminho para o arquivo de chave TLS. |
String |
true |
|
tlsCertificateFilePath |
Caminho para o arquivo de certificado TLS. |
String |
true |
|
tlsTrustCertsFilePath |
Caminho para o arquivo de certificado TLS confiável. |
String |
true |
|
tlsAllowInsecureConnection |
Se o cliente aceita certificados TLS não confiáveis do broker. |
boolean |
true |
falso |
tlsHostnameVerificationEnable |
Se o nome do host é validado quando o cliente cria uma conexão TLS com brokers. |
boolean |
true |
falso |
concurrentLookupRequest |
O número de solicitações de pesquisa simultâneas que podem ser enviadas em cada conexão do broker. Definir um máximo evita sobrecarregar um broker. |
int |
true |
5000 |
maxLookupRequest |
Número máximo de solicitações de pesquisa permitidas em cada conexão do broker para evitar a sobrecarga de um broker. |
int |
true |
50000 |
maxLookupRedirects |
Tempos máximos de solicitações de pesquisa redirecionadas. |
int |
true |
20 |
maxNumberOfRejectedRequestPerConnection |
Número máximo de solicitações rejeitadas de um broker em um determinado período de tempo (60 segundos) após a conexão atual ser fechada e o cliente criar uma nova conexão para se conectar a um broker diferente. |
int |
true |
50 |
keepAliveIntervalSeconds |
Segundos de intervalo de manutenção ativa para cada conexão do broker do cliente. |
int |
true |
30 |
connectionTimeoutMs |
Duração da espera para que uma conexão com um broker seja estabelecida. Se a duração passar sem uma resposta de um broker, a tentativa de conexão será descartada. |
int |
true |
10000 |
requestTimeoutMs |
Duração máxima para concluir uma solicitação. |
int |
true |
60000 |
readTimeoutMs |
Tempo máximo de leitura de uma solicitação. |
int |
true |
60000 |
autoCertRefreshSeconds |
Segundos de atualização automática do certificado. |
int |
true |
300 |
initialBackoffIntervalNanos |
Intervalo de recuo inicial (em nanossegundos). |
long |
true |
100000000 |
maxBackoffIntervalNanos |
Intervalo máximo de recuo (em nanossegundos). |
long |
true |
60000000000 |
enableBusyWait |
Se deseja habilitar BusyWait para EpollEventLoopGroup. |
boolean |
true |
falso |
listenerName |
Nome do ouvinte para pesquisa. Os clientes podem usar listenerName para escolher um dos ouvintes como a URL do serviço para criar uma conexão com o broker, desde que a rede esteja acessível." advertisedListeners" deve ser habilitado no lado do corretor. |
String |
true |
|
useKeyStoreTls |
Defina o TLS usando o modo KeyStore. |
boolean |
true |
falso |
sslProvider |
O provedor TLS usado por um cliente interno para autenticar com outros brokers Pulsar. |
String |
true |
|
tlsKeyStoreType |
Configuração do tipo TLS KeyStore. |
String |
true |
JKS |
tlsKeyStorePath |
Caminho do TLS KeyStore. |
String |
true |
|
tlsKeyStorePassword |
Senha do TLS KeyStore. |
String |
true |
|
tlsTrustStoreType |
Configuração do tipo TLS TrustStore. Você precisa definir essa configuração quando a autenticação do cliente é necessária. |
String |
true |
JKS |
tlsTrustStorePath |
Caminho do TLS TrustStore. |
String |
true |
|
tlsTrustStorePassword |
Senha do TLS TrustStore. |
String |
true |
|
tlsCiphers |
Conjunto de cifras TLS. |
Conjunto |
true |
[] |
tlsProtocols |
Protocolos de TLS. |
Conjunto |
true |
[] |
memoryLimitBytes |
Limite de uso de memória do cliente (em byte). O padrão de 64 milhões pode garantir uma alta taxa de transferência do produtor. |
long |
true |
67108864 |
proxyServiceUrl |
URL do serviço de proxy. proxyServiceUrl e proxyProtocol devem ser mutuamente inclusivos. |
String |
true |
|
proxyProtocol |
Protocolo do serviço de proxy. proxyServiceUrl e proxyProtocol devem ser mutuamente inclusivos. |
ProxyProtocol |
true |
|
enableTransaction |
Se deve habilitar a transação. |
boolean |
true |
falso |
clock |
Relógio |
falso |
||
dnsLookupBindAddress |
O endereço de ligação de pesquisa dns do cliente Pulsar, o comportamento padrão é vincular em 0.0.0.0 |
String |
true |
|
dnsLookupBindPort |
A porta de ligação de pesquisa dns do cliente Pulsar, entra em vigor quando dnsLookupBindAddress é configurado, o valor padrão é 0. |
int |
true |
0 |
socks5ProxyAddress |
Endereço do proxy SOCKS5. |
InetSocketAddress |
true |
|
socks5ProxyUsername |
Nome de usuário do proxy SOCKS5. |
String |
true |
|
socks5ProxyPassword |
Senha do proxy SOCKS5. |
String |
true |
|
description |
A descrição extra da versão do cliente. O comprimento não pode exceder 64. |
String |
true |
Configuration properties not configurable in configuration files (non-serializable) is noted in the column |
12. Indo mais longe
This guide has shown how you can interact with Pulsar using Quarkus. It utilizes Quarkus Messaging to build data streaming applications.
Se quiser ir mais longe, consulte a documentação da Mensageria Reativa do SmallRye, a implementação utilizada no Quarkus.