The English version of quarkus.io is the official project site. Translated sites are community supported on a best-effort basis.

Usando Apache Kafka Streams

Este guia demonstra como a sua aplicação Quarkus pode utilizar a API Apache Kafka Streams para implementar aplicações de processamento de fluxo baseadas no Apache Kafka.

Pré-requisitos

Para concluir este guia, você precisa:

  • Mais ou menos 30 minutes

  • Um IDE

  • JDK 17+ installed with JAVA_HOME configured appropriately

  • Apache Maven 3.9.8

  • Docker e Docker Compose ou Podman e Docker Compose

  • Opcionalmente, o Quarkus CLI se você quiser usá-lo

  • Opcionalmente, Mandrel ou GraalVM instalado e configurado apropriadamente se você quiser criar um executável nativo (ou Docker se você usar uma compilação de contêiner nativo)

It is recommended, that you have read the Kafka quickstart before.

The Quarkus extension for Kafka Streams allows for very fast turnaround times during development by supporting the Quarkus Dev Mode (e.g. via ./mvnw compile quarkus:dev). After changing the code of your Kafka Streams topology, the application will automatically be reloaded when the next input message arrives.

A recommended development set-up is to have some producer which creates test messages on the processed topic(s) in fixed intervals, e.g. every second and observe the streaming application’s output topic(s) using a tool such as kafkacat. Using the dev mode, you’ll instantly see messages on the output topic(s) as produced by the latest version of your streaming application when saving.

For the best development experience, we recommend applying the following configuration settings to your Kafka broker:

group.min.session.timeout.ms=250

Also specify the following settings in your Quarkus application.properties:

kafka-streams.consumer.session.timeout.ms=250
kafka-streams.consumer.heartbeat.interval.ms=200

Together, these settings will ensure that the application can very quickly reconnect to the broker after being restarted in dev mode.

Arquitetura

In this guide, we are going to generate (random) temperature values in one component (named generator). These values are associated to given weather stations and are written in a Kafka topic (temperature-values). Another topic (weather-stations) contains just the main data about the weather stations themselves (id and name).

A second component (aggregator) reads from the two Kafka topics and processes them in a streaming pipeline:

  • the two topics are joined on weather station id

  • per weather station the min, max and average temperature is determined

  • this aggregated data is written out to a third topic (temperatures-aggregated)

The data can be examined by inspecting the output topic. By exposing a Kafka Streams interactive query, the latest result for each weather station can alternatively be obtained via a simple REST query.

The overall architecture looks like so:

Architecture

Solução

Recomendamos que siga as instruções nas seções seguintes e crie a aplicação passo a passo. No entanto, você pode ir diretamente para o exemplo completo.

Clone o repositório Git: git clone https://github.com/quarkusio/quarkus-quickstarts.git, ou baixe um arquivo.

The solution is located in the kafka-streams-quickstart directory.

Creating the Producer Maven Project

First, we need a new project with the temperature value producer. Create a new project with the following command:

CLI
quarkus create app org.acme:kafka-streams-quickstart-producer \
    --extension='kafka' \
    --no-code
mv kafka-streams-quickstart-producer producer

Para criar um projeto Gradle, adicione a opção --gradle ou --gradle-kotlin-dsl.

Para obter mais informações sobre como instalar e usar a CLI do Quarkus, consulte o guia Quarkus CLI.

Maven
mvn io.quarkus.platform:quarkus-maven-plugin:3.14.2:create \
    -DprojectGroupId=org.acme \
    -DprojectArtifactId=kafka-streams-quickstart-producer \
    -Dextensions='kafka' \
    -DnoCode
mv kafka-streams-quickstart-producer producer

Para criar um projeto Gradle, adicione a opção '-DbuildTool=gradle' ou '-DbuildTool=gradle-kotlin-dsl'.

Para usuários do Windows:

  • Se estiver usando cmd, (não use barra invertida '\' e coloque tudo na mesma linha)

  • Se estiver usando o Powershell, envolva os parâmetros '-D' entre aspas duplas, por exemplo, '"-DprojectArtifactId=kafka-streams-quickstart-producer"'

This command generates a Maven project, importing the Reactive Messaging and Kafka connector extensions.

If you already have your Quarkus project configured, you can add the messaging-kafka extension to your project by running the following command in your project base directory:

CLI
quarkus extension add quarkus-messaging-kafka
Maven
./mvnw quarkus:add-extension -Dextensions='quarkus-messaging-kafka'
Gradle
./gradlew addExtension --extensions='quarkus-messaging-kafka'

Isto irá adicionar o seguinte trecho no seu arquivo de build:

pom.xml
<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-messaging-kafka</artifactId>
</dependency>
build.gradle
implementation("io.quarkus:quarkus-messaging-kafka")

The Temperature Value Producer

Create the producer/src/main/java/org/acme/kafka/streams/producer/generator/ValuesGenerator.java file, with the following content:

package org.acme.kafka.streams.producer.generator;

import java.math.BigDecimal;
import java.math.RoundingMode;
import java.time.Duration;
import java.time.Instant;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Random;

import jakarta.enterprise.context.ApplicationScoped;

import io.smallrye.mutiny.Multi;
import io.smallrye.reactive.messaging.kafka.Record;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import org.jboss.logging.Logger;

/**
 * A bean producing random temperature data every second.
 * The values are written to a Kafka topic (temperature-values).
 * Another topic contains the name of weather stations (weather-stations).
 * The Kafka configuration is specified in the application configuration.
 */
@ApplicationScoped
public class ValuesGenerator {

    private static final Logger LOG = Logger.getLogger(ValuesGenerator.class);

    private Random random = new Random();

    private List<WeatherStation> stations = List.of(
                        new WeatherStation(1, "Hamburg", 13),
                        new WeatherStation(2, "Snowdonia", 5),
                        new WeatherStation(3, "Boston", 11),
                        new WeatherStation(4, "Tokio", 16),
                        new WeatherStation(5, "Cusco", 12),
                        new WeatherStation(6, "Svalbard", -7),
                        new WeatherStation(7, "Porthsmouth", 11),
                        new WeatherStation(8, "Oslo", 7),
                        new WeatherStation(9, "Marrakesh", 20));

    @Outgoing("temperature-values")                                        (1)
    public Multi<Record<Integer, String>> generate() {
        return Multi.createFrom().ticks().every(Duration.ofMillis(500))    (2)
                .onOverflow().drop()
                .map(tick -> {
                    WeatherStation station = stations.get(random.nextInt(stations.size()));
                    double temperature = BigDecimal.valueOf(random.nextGaussian() * 15 + station.averageTemperature)
                            .setScale(1, RoundingMode.HALF_UP)
                            .doubleValue();

                    LOG.infov("station: {0}, temperature: {1}", station.name, temperature);
                    return Record.of(station.id, Instant.now() + ";" + temperature);
                });
    }

    @Outgoing("weather-stations")                                          (3)
    public Multi<Record<Integer, String>> weatherStations() {
        return Multi.createFrom().items(stations.stream()
            .map(s -> Record.of(
                    s.id,
                    "{ \"id\" : " + s.id +
                    ", \"name\" : \"" + s.name + "\" }"))
        );
    }

    private static class WeatherStation {

        int id;
        String name;
        int averageTemperature;

        public WeatherStation(int id, String name, int averageTemperature) {
            this.id = id;
            this.name = name;
            this.averageTemperature = averageTemperature;
        }
    }
}
1 Instruct Reactive Messaging to dispatch the items from the returned Multi to temperature-values.
2 The method returns a Mutiny stream (Multi) emitting a random temperature value every 0.5 seconds.
3 Instruct Reactive Messaging to dispatch the items from the returned Multi (static list of weather stations) to weather-stations.

The two methods each return a reactive stream whose items are sent to the streams named temperature-values and weather-stations, respectively.

Topic Configuration

The two channels are mapped to Kafka topics using the Quarkus configuration file application.properties. For that, add the following to the file producer/src/main/resources/application.properties:

# Configure the Kafka broker location
kafka.bootstrap.servers=localhost:9092

mp.messaging.outgoing.temperature-values.connector=smallrye-kafka
mp.messaging.outgoing.temperature-values.key.serializer=org.apache.kafka.common.serialization.IntegerSerializer
mp.messaging.outgoing.temperature-values.value.serializer=org.apache.kafka.common.serialization.StringSerializer

mp.messaging.outgoing.weather-stations.connector=smallrye-kafka
mp.messaging.outgoing.weather-stations.key.serializer=org.apache.kafka.common.serialization.IntegerSerializer
mp.messaging.outgoing.weather-stations.value.serializer=org.apache.kafka.common.serialization.StringSerializer

This configures the Kafka bootstrap server, the two topics and the corresponding (de-)serializers. More details about the different configuration options are available on the Producer configuration and Consumer configuration section from the Kafka documentation.

Creating the Aggregator Maven Project

With the producer application in place, it’s time to implement the actual aggregator application, which will run the Kafka Streams pipeline. Create another project like so:

CLI
quarkus create app org.acme:kafka-streams-quickstart-aggregator \
    --extension='kafka-streams,rest-jackson' \
    --no-code
mv kafka-streams-quickstart-aggregator aggregator

Para criar um projeto Gradle, adicione a opção --gradle ou --gradle-kotlin-dsl.

Para obter mais informações sobre como instalar e usar a CLI do Quarkus, consulte o guia Quarkus CLI.

Maven
mvn io.quarkus.platform:quarkus-maven-plugin:3.14.2:create \
    -DprojectGroupId=org.acme \
    -DprojectArtifactId=kafka-streams-quickstart-aggregator \
    -Dextensions='kafka-streams,rest-jackson' \
    -DnoCode
mv kafka-streams-quickstart-aggregator aggregator

Para criar um projeto Gradle, adicione a opção '-DbuildTool=gradle' ou '-DbuildTool=gradle-kotlin-dsl'.

Para usuários do Windows:

  • Se estiver usando cmd, (não use barra invertida '\' e coloque tudo na mesma linha)

  • Se estiver usando o Powershell, envolva os parâmetros '-D' entre aspas duplas, por exemplo, '"-DprojectArtifactId=kafka-streams-quickstart-aggregator"'

This creates the aggregator project with the Quarkus extension for Kafka Streams and with the Jackson support for Quarkus REST (formerly RESTEasy Reactive).

If you already have your Quarkus project configured, you can add the kafka-streams extension to your project by running the following command in your project base directory:

CLI
quarkus extension add kafka-streams
Maven
./mvnw quarkus:add-extension -Dextensions='kafka-streams'
Gradle
./gradlew addExtension --extensions='kafka-streams'

Isso adicionará o seguinte ao seu arquivo pom.xml:

pom.xml
<dependency>
    <groupId>io.quarkus</groupId>
    <artifactId>quarkus-kafka-streams</artifactId>
</dependency>
build.gradle
implementation("io.quarkus:quarkus-kafka-streams")

The Pipeline Implementation

Let’s begin the implementation of the stream processing application by creating a few value objects for representing temperature measurements, weather stations and for keeping track of aggregated values.

First, create the file aggregator/src/main/java/org/acme/kafka/streams/aggregator/model/WeatherStation.java, representing a weather station, with the following content:

package org.acme.kafka.streams.aggregator.model;

import io.quarkus.runtime.annotations.RegisterForReflection;

@RegisterForReflection (1)
public class WeatherStation {

    public int id;
    public String name;
}
1 The @RegisterForReflection annotation instructs Quarkus to keep the class and its members during the native compilation. More details about the @RegisterForReflection annotation can be found on the native application tips page.

Then the file aggregator/src/main/java/org/acme/kafka/streams/aggregator/model/TemperatureMeasurement.java, representing temperature measurements for a given station:

package org.acme.kafka.streams.aggregator.model;

import java.time.Instant;

public class TemperatureMeasurement {

    public int stationId;
    public String stationName;
    public Instant timestamp;
    public double value;

    public TemperatureMeasurement(int stationId, String stationName, Instant timestamp,
            double value) {
        this.stationId = stationId;
        this.stationName = stationName;
        this.timestamp = timestamp;
        this.value = value;
    }
}

And finally aggregator/src/main/java/org/acme/kafka/streams/aggregator/model/Aggregation.java, which will be used to keep track of the aggregated values while the events are processed in the streaming pipeline:

package org.acme.kafka.streams.aggregator.model;

import java.math.BigDecimal;
import java.math.RoundingMode;

import io.quarkus.runtime.annotations.RegisterForReflection;

@RegisterForReflection
public class Aggregation {

    public int stationId;
    public String stationName;
    public double min = Double.MAX_VALUE;
    public double max = Double.MIN_VALUE;
    public int count;
    public double sum;
    public double avg;

    public Aggregation updateFrom(TemperatureMeasurement measurement) {
        stationId = measurement.stationId;
        stationName = measurement.stationName;

        count++;
        sum += measurement.value;
        avg = BigDecimal.valueOf(sum / count)
                .setScale(1, RoundingMode.HALF_UP).doubleValue();

        min = Math.min(min, measurement.value);
        max = Math.max(max, measurement.value);

        return this;
    }
}

Next, let’s create the actual streaming query implementation itself in the aggregator/src/main/java/org/acme/kafka/streams/aggregator/streams/TopologyProducer.java file. All we need to do for that is to declare a CDI producer method which returns the Kafka Streams Topology; the Quarkus extension will take care of configuring, starting and stopping the actual Kafka Streams engine.

package org.acme.kafka.streams.aggregator.streams;

import java.time.Instant;

import jakarta.enterprise.context.ApplicationScoped;
import jakarta.enterprise.inject.Produces;

import org.acme.kafka.streams.aggregator.model.Aggregation;
import org.acme.kafka.streams.aggregator.model.TemperatureMeasurement;
import org.acme.kafka.streams.aggregator.model.WeatherStation;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.Topology;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.GlobalKTable;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.state.KeyValueBytesStoreSupplier;
import org.apache.kafka.streams.state.Stores;

import io.quarkus.kafka.client.serialization.ObjectMapperSerde;

@ApplicationScoped
public class TopologyProducer {

    static final String WEATHER_STATIONS_STORE = "weather-stations-store";

    private static final String WEATHER_STATIONS_TOPIC = "weather-stations";
    private static final String TEMPERATURE_VALUES_TOPIC = "temperature-values";
    private static final String TEMPERATURES_AGGREGATED_TOPIC = "temperatures-aggregated";

    @Produces
    public Topology buildTopology() {
        StreamsBuilder builder = new StreamsBuilder();

        ObjectMapperSerde<WeatherStation> weatherStationSerde = new ObjectMapperSerde<>(
                WeatherStation.class);
        ObjectMapperSerde<Aggregation> aggregationSerde = new ObjectMapperSerde<>(Aggregation.class);

        KeyValueBytesStoreSupplier storeSupplier = Stores.persistentKeyValueStore(
                WEATHER_STATIONS_STORE);

        GlobalKTable<Integer, WeatherStation> stations = builder.globalTable( (1)
                WEATHER_STATIONS_TOPIC,
                Consumed.with(Serdes.Integer(), weatherStationSerde));

        builder.stream(                                                       (2)
                        TEMPERATURE_VALUES_TOPIC,
                        Consumed.with(Serdes.Integer(), Serdes.String())
                )
                .join(                                                        (3)
                        stations,
                        (stationId, timestampAndValue) -> stationId,
                        (timestampAndValue, station) -> {
                            String[] parts = timestampAndValue.split(";");
                            return new TemperatureMeasurement(station.id, station.name,
                                    Instant.parse(parts[0]), Double.valueOf(parts[1]));
                        }
                )
                .groupByKey()                                                 (4)
                .aggregate(                                                   (5)
                        Aggregation::new,
                        (stationId, value, aggregation) -> aggregation.updateFrom(value),
                        Materialized.<Integer, Aggregation> as(storeSupplier)
                            .withKeySerde(Serdes.Integer())
                            .withValueSerde(aggregationSerde)
                )
                .toStream()
                .to(                                                          (6)
                        TEMPERATURES_AGGREGATED_TOPIC,
                        Produced.with(Serdes.Integer(), aggregationSerde)
                );

        return builder.build();
    }
}
1 The weather-stations table is read into a GlobalKTable, representing the current state of each weather station
2 The temperature-values topic is read into a KStream; whenever a new message arrives to this topic, the pipeline will be processed for this measurement
3 The message from the temperature-values topic is joined with the corresponding weather station, using the topic’s key (weather station id); the join result contains the data from the measurement and associated weather station message
4 The values are grouped by message key (the weather station id)
5 Within each group, all the measurements of that station are aggregated, by keeping track of minimum and maximum values and calculating the average value of all measurements of that station (see the Aggregation type)
6 The results of the pipeline are written out to the temperatures-aggregated topic

The Kafka Streams extension is configured via the Quarkus configuration file application.properties. Create the file aggregator/src/main/resources/application.properties with the following contents:

quarkus.kafka-streams.bootstrap-servers=localhost:9092
quarkus.kafka-streams.application-server=${hostname}:8080
quarkus.kafka-streams.topics=weather-stations,temperature-values

# pass-through options
kafka-streams.cache.max.bytes.buffering=10240
kafka-streams.commit.interval.ms=1000
kafka-streams.metadata.max.age.ms=500
kafka-streams.auto.offset.reset=earliest
kafka-streams.metrics.recording.level=DEBUG

The options with the quarkus.kafka-streams prefix can be changed dynamically at application startup, e.g. via environment variables or system properties. bootstrap-servers and application-server are mapped to the Kafka Streams properties bootstrap.servers and application.server, respectively. topics is specific to Quarkus: the application will wait for all the given topics to exist before launching the Kafka Streams engine. This is to done to gracefully await the creation of topics that don’t yet exist at application startup time.

Alternatively, you can use kafka.bootstrap.servers instead of quarkus.kafka-streams.bootstrap-servers as you did in the generator project above.

Once you are ready to promote your application into production, consider changing the above configuration values. While cache.max.bytes.buffering=10240 will move your records faster through the topology, the default value of 10485760 is more throughput-friendly. Also condider increasing metadata.max.age.ms from 500, which will update cluster metadata quickly, but will generate a lot of redundant requests, to a value closer to the default of 300000. A commit.interval.ms of 1000 is good for exactly-once processing, but might generate excessive load for the default at-least-once processing with the default value of 30000.

All the properties within the kafka-streams namespace are passed through as-is to the Kafka Streams engine. Changing their values requires a rebuild of the application.

Building and Running the Applications

We now can build the producer and aggregator applications:

./mvnw clean package -f producer/pom.xml
./mvnw clean package -f aggregator/pom.xml

Instead of running them directly on the host machine using the Quarkus dev mode, we’re going to package them into container images and launch them via Docker Compose. This is done in order to demonstrate scaling the aggregator aggregation to multiple nodes later on.

The Dockerfile created by Quarkus by default needs one adjustment for the aggregator application in order to run the Kafka Streams pipeline. To do so, edit the file aggregator/src/main/docker/Dockerfile.jvm and replace the line FROM fabric8/java-alpine-openjdk8-jre with FROM fabric8/java-centos-openjdk8-jdk.

Next create a Docker Compose file (docker-compose.yaml) for spinning up the two applications as well as Apache Kafka and ZooKeeper like so:

version: '3.5'

services:
  zookeeper:
    image: quay.io/strimzi/kafka:0.41.0-kafka-3.7.0
    command: [
      "sh", "-c",
      "bin/zookeeper-server-start.sh config/zookeeper.properties"
    ]
    ports:
      - "2181:2181"
    environment:
      LOG_DIR: /tmp/logs
    networks:
      - kafkastreams-network
  kafka:
    image: quay.io/strimzi/kafka:0.41.0-kafka-3.7.0
    command: [
      "sh", "-c",
      "bin/kafka-server-start.sh config/server.properties --override listeners=$${KAFKA_LISTENERS} --override advertised.listeners=$${KAFKA_ADVERTISED_LISTENERS} --override zookeeper.connect=$${KAFKA_ZOOKEEPER_CONNECT} --override num.partitions=$${KAFKA_NUM_PARTITIONS}"
    ]
    depends_on:
      - zookeeper
    ports:
      - "9092:9092"
    environment:
      LOG_DIR: "/tmp/logs"
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092
      KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092
      KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
      KAFKA_NUM_PARTITIONS: 3
    networks:
      - kafkastreams-network

  producer:
    image: quarkus-quickstarts/kafka-streams-producer:1.0
    build:
      context: producer
      dockerfile: src/main/docker/Dockerfile.${QUARKUS_MODE:-jvm}
    environment:
      KAFKA_BOOTSTRAP_SERVERS: kafka:9092
    networks:
      - kafkastreams-network

  aggregator:
    image: quarkus-quickstarts/kafka-streams-aggregator:1.0
    build:
      context: aggregator
      dockerfile: src/main/docker/Dockerfile.${QUARKUS_MODE:-jvm}
    environment:
      QUARKUS_KAFKA_STREAMS_BOOTSTRAP_SERVERS: kafka:9092
    networks:
      - kafkastreams-network

networks:
  kafkastreams-network:
    name: ks

To launch all the containers, building the producer and aggregator container images, run docker-compose up --build.

Instead of QUARKUS_KAFKA_STREAMS_BOOTSTRAP_SERVERS, you can use KAFKA_BOOTSTRAP_SERVERS.

You should see log statements from the producer application about messages being sent to the "temperature-values" topic.

Now run an instance of the debezium/tooling image, attaching to the same network all the other containers run in. This image provides several useful tools such as kafkacat and httpie:

docker run --tty --rm -i --network ks debezium/tooling:1.1

Within the tooling container, run kafkacat to examine the results of the streaming pipeline:

kafkacat -b kafka:9092 -C -o beginning -q -t temperatures-aggregated

{"avg":34.7,"count":4,"max":49.4,"min":16.8,"stationId":9,"stationName":"Marrakesh","sum":138.8}
{"avg":15.7,"count":1,"max":15.7,"min":15.7,"stationId":2,"stationName":"Snowdonia","sum":15.7}
{"avg":12.8,"count":7,"max":25.5,"min":-13.8,"stationId":7,"stationName":"Porthsmouth","sum":89.7}
...

You should see new values arrive as the producer continues to emit temperature measurements, each value on the outbound topic showing the minimum, maximum and average temperature values of the represented weather station.

Interactive Queries

Subscribing to the temperatures-aggregated topic is a great way to react to any new temperature values. It’s a bit wasteful though if you’re just interested in the latest aggregated value for a given weather station. This is where Kafka Streams interactive queries shine: they let you directly query the underlying state store of the pipeline for the value associated to a given key. By exposing a simple REST endpoint which queries the state store, the latest aggregation result can be retrieved without having to subscribe to any Kafka topic.

Let’s begin by creating a new class InteractiveQueries in the file aggregator/src/main/java/org/acme/kafka/streams/aggregator/streams/InteractiveQueries.java:

one more method to the KafkaStreamsPipeline class which obtains the current state for a given key:

package org.acme.kafka.streams.aggregator.streams;

import jakarta.enterprise.context.ApplicationScoped;
import jakarta.inject.Inject;

import org.acme.kafka.streams.aggregator.model.Aggregation;
import org.acme.kafka.streams.aggregator.model.WeatherStationData;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.errors.InvalidStateStoreException;
import org.apache.kafka.streams.state.QueryableStoreTypes;
import org.apache.kafka.streams.state.ReadOnlyKeyValueStore;

@ApplicationScoped
public class InteractiveQueries {

    @Inject
    KafkaStreams streams;

    public GetWeatherStationDataResult getWeatherStationData(int id) {
        Aggregation result = getWeatherStationStore().get(id);

        if (result != null) {
            return GetWeatherStationDataResult.found(WeatherStationData.from(result)); (1)
        }
        else {
            return GetWeatherStationDataResult.notFound();                             (2)
        }
    }

    private ReadOnlyKeyValueStore<Integer, Aggregation> getWeatherStationStore() {
        while (true) {
            try {
                return streams.store(TopologyProducer.WEATHER_STATIONS_STORE, QueryableStoreTypes.keyValueStore());
            } catch (InvalidStateStoreException e) {
                // ignore, store not ready yet
            }
        }
    }
}
1 A value for the given station id was found, so that value will be returned
2 No value was found, either because a non-existing station was queried or no measurement exists yet for the given station

Also create the method’s return type in the file aggregator/src/main/java/org/acme/kafka/streams/aggregator/streams/GetWeatherStationDataResult.java:

package org.acme.kafka.streams.aggregator.streams;

import java.util.Optional;
import java.util.OptionalInt;

import org.acme.kafka.streams.aggregator.model.WeatherStationData;

public class GetWeatherStationDataResult {

    private static GetWeatherStationDataResult NOT_FOUND =
            new GetWeatherStationDataResult(null);

    private final WeatherStationData result;

    private GetWeatherStationDataResult(WeatherStationData result) {
        this.result = result;
    }

    public static GetWeatherStationDataResult found(WeatherStationData data) {
        return new GetWeatherStationDataResult(data);
    }

    public static GetWeatherStationDataResult notFound() {
        return NOT_FOUND;
    }

    public Optional<WeatherStationData> getResult() {
        return Optional.ofNullable(result);
    }
}

Also create aggregator/src/main/java/org/acme/kafka/streams/aggregator/model/WeatherStationData.java, which represents the actual aggregation result for a weather station:

package org.acme.kafka.streams.aggregator.model;

import io.quarkus.runtime.annotations.RegisterForReflection;

@RegisterForReflection
public class WeatherStationData {

    public int stationId;
    public String stationName;
    public double min = Double.MAX_VALUE;
    public double max = Double.MIN_VALUE;
    public int count;
    public double avg;

    private WeatherStationData(int stationId, String stationName, double min, double max,
            int count, double avg) {
        this.stationId = stationId;
        this.stationName = stationName;
        this.min = min;
        this.max = max;
        this.count = count;
        this.avg = avg;
    }

    public static WeatherStationData from(Aggregation aggregation) {
        return new WeatherStationData(
                aggregation.stationId,
                aggregation.stationName,
                aggregation.min,
                aggregation.max,
                aggregation.count,
                aggregation.avg);
    }
}

We now can add a simple REST endpoint (aggregator/src/main/java/org/acme/kafka/streams/aggregator/rest/WeatherStationEndpoint.java), which invokes getWeatherStationData() and returns the data to the client:

package org.acme.kafka.streams.aggregator.rest;

import java.net.URI;
import java.net.URISyntaxException;
import java.util.List;

import jakarta.enterprise.context.ApplicationScoped;
import jakarta.inject.Inject;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.core.MediaType;
import jakarta.ws.rs.core.Response;
import jakarta.ws.rs.core.Response.Status;

import org.acme.kafka.streams.aggregator.streams.GetWeatherStationDataResult;
import org.acme.kafka.streams.aggregator.streams.KafkaStreamsPipeline;

@ApplicationScoped
@Path("/weather-stations")
public class WeatherStationEndpoint {

    @Inject
    InteractiveQueries interactiveQueries;

    @GET
    @Path("/data/{id}")
    public Response getWeatherStationData(int id) {
        GetWeatherStationDataResult result = interactiveQueries.getWeatherStationData(id);

        if (result.getResult().isPresent()) {  (1)
            return Response.ok(result.getResult().get()).build();
        }
        else {
            return Response.status(Status.NOT_FOUND.getStatusCode(),
                    "No data found for weather station " + id).build();
        }
    }
}
1 Depending on whether a value was obtained, either return that value or a 404 response

With this code in place, it’s time to rebuild the application and the aggregator service in Docker Compose:

./mvnw clean package -f aggregator/pom.xml
docker-compose stop aggregator
docker-compose up --build -d

This will rebuild the aggregator container and restart its service. Once that’s done, you can invoke the service’s REST API to obtain the temperature data for one of the existing stations. To do so, you can use httpie in the tooling container launched before:

http aggregator:8080/weather-stations/data/1

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 85
Content-Type: application/json
Date: Tue, 18 Jun 2019 19:29:16 GMT

{
    "avg": 12.9,
    "count": 146,
    "max": 41.0,
    "min": -25.6,
    "stationId": 1,
    "stationName": "Hamburg"
}

Scaling Out

A very interesting trait of Kafka Streams applications is that they can be scaled out, i.e. the load and state can be distributed amongst multiple application instances running the same pipeline. Each node will then contain a subset of the aggregation results, but Kafka Streams provides you with an API to obtain the information which node is hosting a given key. The application can then either fetch the data directly from the other instance, or simply point the client to the location of that other node.

Launching multiple instances of the aggregator application will make look the overall architecture like so:

Architecture with multiple aggregator nodes

The InteractiveQueries class must be adjusted slightly for this distributed architecture:

public GetWeatherStationDataResult getWeatherStationData(int id) {
    StreamsMetadata metadata = streams.metadataForKey(                  (1)
            TopologyProducer.WEATHER_STATIONS_STORE,
            id,
            Serdes.Integer().serializer()
    );

    if (metadata == null || metadata == StreamsMetadata.NOT_AVAILABLE) {
        LOG.warn("Found no metadata for key {}", id);
        return GetWeatherStationDataResult.notFound();
    }
    else if (metadata.host().equals(host)) {                            (2)
        LOG.info("Found data for key {} locally", id);
        Aggregation result = getWeatherStationStore().get(id);

        if (result != null) {
            return GetWeatherStationDataResult.found(WeatherStationData.from(result));
        }
        else {
            return GetWeatherStationDataResult.notFound();
        }
    }
    else {                                                              (3)
        LOG.info(
            "Found data for key {} on remote host {}:{}",
            id,
            metadata.host(),
            metadata.port()
        );
        return GetWeatherStationDataResult.foundRemotely(metadata.host(), metadata.port());
    }
}

public List<PipelineMetadata> getMetaData() {                           (4)
    return streams.allMetadataForStore(TopologyProducer.WEATHER_STATIONS_STORE)
            .stream()
            .map(m -> new PipelineMetadata(
                    m.hostInfo().host() + ":" + m.hostInfo().port(),
                    m.topicPartitions()
                        .stream()
                        .map(TopicPartition::toString)
                        .collect(Collectors.toSet()))
            )
            .collect(Collectors.toList());
}
1 The streams metadata for the given weather station id is obtained
2 The given key (weather station id) is maintained by the local application node, i.e. it can answer the query itself
3 The given key is maintained by another application node; in this case the information about that node (host and port) will be returned
4 The getMetaData() method is added to provide callers with a list of all the nodes in the application cluster.

The GetWeatherStationDataResult type must be adjusted accordingly:

package org.acme.kafka.streams.aggregator.streams;

import java.util.Optional;
import java.util.OptionalInt;

import org.acme.kafka.streams.aggregator.model.WeatherStationData;

public class GetWeatherStationDataResult {

    private static GetWeatherStationDataResult NOT_FOUND =
            new GetWeatherStationDataResult(null, null, null);

    private final WeatherStationData result;
    private final String host;
    private final Integer port;

    private GetWeatherStationDataResult(WeatherStationData result, String host,
            Integer port) {
        this.result = result;
        this.host = host;
        this.port = port;
    }

    public static GetWeatherStationDataResult found(WeatherStationData data) {
        return new GetWeatherStationDataResult(data, null, null);
    }

    public static GetWeatherStationDataResult foundRemotely(String host, int port) {
        return new GetWeatherStationDataResult(null, host, port);
    }

    public static GetWeatherStationDataResult notFound() {
        return NOT_FOUND;
    }

    public Optional<WeatherStationData> getResult() {
        return Optional.ofNullable(result);
    }

    public Optional<String> getHost() {
        return Optional.ofNullable(host);
    }

    public OptionalInt getPort() {
        return port != null ? OptionalInt.of(port) : OptionalInt.empty();
    }
}

Also, the return type for getMetaData() must be defined (aggregator/src/main/java/org/acme/kafka/streams/aggregator/streams/PipelineMetadata.java):

package org.acme.kafka.streams.aggregator.streams;

import java.util.Set;

public class PipelineMetadata {

    public String host;
    public Set<String> partitions;

    public PipelineMetadata(String host, Set<String> partitions) {
        this.host = host;
        this.partitions = partitions;
    }
}

Lastly, the REST endpoint class must be updated:

package org.acme.kafka.streams.aggregator.rest;

import java.net.URI;
import java.net.URISyntaxException;
import java.util.List;

import jakarta.enterprise.context.ApplicationScoped;
import jakarta.inject.Inject;
import jakarta.ws.rs.Consumes;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;
import jakarta.ws.rs.core.Response;
import jakarta.ws.rs.core.Response.Status;

import org.acme.kafka.streams.aggregator.streams.GetWeatherStationDataResult;
import org.acme.kafka.streams.aggregator.streams.KafkaStreamsPipeline;
import org.acme.kafka.streams.aggregator.streams.PipelineMetadata;

@ApplicationScoped
@Path("/weather-stations")
public class WeatherStationEndpoint {

    @Inject
    InteractiveQueries interactiveQueries;

    @GET
    @Path("/data/{id}")
    @Consumes(MediaType.APPLICATION_JSON)
    @Produces(MediaType.APPLICATION_JSON)
    public Response getWeatherStationData(int id) {
        GetWeatherStationDataResult result = interactiveQueries.getWeatherStationData(id);

        if (result.getResult().isPresent()) {                     (1)
            return Response.ok(result.getResult().get()).build();
        }
        else if (result.getHost().isPresent()) {                  (2)
            URI otherUri = getOtherUri(result.getHost().get(), result.getPort().getAsInt(),
                    id);
            return Response.seeOther(otherUri).build();
        }
        else {                                                    (3)
            return Response.status(Status.NOT_FOUND.getStatusCode(),
                    "No data found for weather station " + id).build();
        }
    }

    @GET
    @Path("/meta-data")
    @Produces(MediaType.APPLICATION_JSON)
    public List<PipelineMetadata> getMetaData() {                 (4)
        return interactiveQueries.getMetaData();
    }

    private URI getOtherUri(String host, int port, int id) {
        try {
            return new URI("http://" + host + ":" + port + "/weather-stations/data/" + id);
        }
        catch (URISyntaxException e) {
            throw new RuntimeException(e);
        }
    }
}
1 The data was found locally, so return it
2 The data is maintained by another node, so reply with a redirect (HTTP status code 303) if the data for the given key is stored on one of the other nodes.
3 No data was found for the given weather station id
4 Exposes information about all the hosts forming the application cluster

Now stop the aggregator service again and rebuild it. Then let’s spin up three instances of it:

./mvnw clean package -f aggregator/pom.xml
docker-compose stop aggregator
docker-compose up --build -d --scale aggregator=3

When invoking the REST API on any of the three instances, it might either be that the aggregation for the requested weather station id is stored locally on the node receiving the query, or it could be stored on one of the other two nodes.

As the load balancer of Docker Compose will distribute requests to the aggregator service in a round-robin fashion, we’ll invoke the actual nodes directly. The application exposes information about all the host names via REST:

http aggregator:8080/weather-stations/meta-data

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 202
Content-Type: application/json
Date: Tue, 18 Jun 2019 20:00:23 GMT

[
    {
        "host": "2af13fe516a9:8080",
        "partitions": [
            "temperature-values-2"
        ]
    },
    {
        "host": "32cc8309611b:8080",
        "partitions": [
            "temperature-values-1"
        ]
    },
    {
        "host": "1eb39af8d587:8080",
        "partitions": [
            "temperature-values-0"
        ]
    }
]

Retrieve the data from one of the three hosts shown in the response (your actual host names will differ):

http 2af13fe516a9:8080/weather-stations/data/1

If that node holds the data for key "1", you’ll get a response like this:

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 74
Content-Type: application/json
Date: Tue, 11 Jun 2019 19:16:31 GMT

{
  "avg": 11.9,
  "count": 259,
  "max": 50.0,
  "min": -30.1,
  "stationId": 1,
  "stationName": "Hamburg"
}

Otherwise, the service will send a redirect:

HTTP/1.1 303 See Other
Connection: keep-alive
Content-Length: 0
Date: Tue, 18 Jun 2019 20:01:03 GMT
Location: http://1eb39af8d587:8080/weather-stations/data/1

You can also have httpie automatically follow the redirect by passing the --follow option:

http --follow 2af13fe516a9:8080/weather-stations/data/1

Running Natively

The Quarkus extension for Kafka Streams enables the execution of stream processing applications natively via GraalVM without further configuration.

To run both the producer and aggregator applications in native mode, the Maven builds can be executed using -Dnative:

./mvnw clean package -f producer/pom.xml -Dnative -Dnative-image.container-runtime=docker
./mvnw clean package -f aggregator/pom.xml -Dnative -Dnative-image.container-runtime=docker

Now create an environment variable named QUARKUS_MODE and with value set to "native":

export QUARKUS_MODE=native

This is used by the Docker Compose file to use the correct Dockerfile when building the producer and aggregator images. The Kafka Streams application can work with less than 50 MB RSS in native mode. To do so, add the Xmx option to the program invocation in aggregator/src/main/docker/Dockerfile.native:

CMD ["./application", "-Dquarkus.http.host=0.0.0.0", "-Xmx32m"]

Now start Docker Compose as described above (don’t forget to rebuild the container images).

Kafka Streams Health Checks

If you are using the quarkus-smallrye-health extension, quarkus-kafka-streams will automatically add:

  • a readiness health check to validate that all topics declared in the quarkus.kafka-streams.topics property are created,

  • a liveness health check based on the Kafka Streams state.

So when you access the /q/health endpoint of your application you will have information about the state of the Kafka Streams and the available and/or missing topics.

This is an example of when the status is DOWN:

curl -i http://aggregator:8080/q/health

HTTP/1.1 503 Service Unavailable
content-type: application/json; charset=UTF-8
content-length: 454

{
    "status": "DOWN",
    "checks": [
        {
            "name": "Kafka Streams state health check",  (1)
            "status": "DOWN",
            "data": {
                "state": "CREATED"
            }
        },
        {
            "name": "Kafka Streams topics health check",  (2)
            "status": "DOWN",
            "data": {
                "available_topics": "weather-stations,temperature-values",
                "missing_topics": "hygrometry-values"
            }
        }
    ]
}
1 Liveness health check. Also available at /q/health/live endpoint.
2 Readiness health check. Also available at /q/health/ready endpoint.

So as you can see, the status is DOWN as soon as one of the quarkus.kafka-streams.topics is missing or the Kafka Streams state is not RUNNING.

If no topics are available, the available_topics key will not be present in the data field of the Kafka Streams topics health check. As well as if no topics are missing, the missing_topics key will not be present in the data field of the Kafka Streams topics health check.

You can of course disable the health check of the quarkus-kafka-streams extension by setting the quarkus.kafka-streams.health.enabled property to false in your application.properties.

Obviously you can create your liveness and readiness probes based on the respective endpoints /q/health/live and /q/health/ready.

Liveness health check

Here is an example of the liveness check:

curl -i http://aggregator:8080/q/health/live

HTTP/1.1 503 Service Unavailable
content-type: application/json; charset=UTF-8
content-length: 225

{
    "status": "DOWN",
    "checks": [
        {
            "name": "Kafka Streams state health check",
            "status": "DOWN",
            "data": {
                "state": "CREATED"
            }
        }
    ]
}

The state is coming from the KafkaStreams.State enum.

Readiness health check

Here is an example of the readiness check:

curl -i http://aggregator:8080/q/health/ready

HTTP/1.1 503 Service Unavailable
content-type: application/json; charset=UTF-8
content-length: 265

{
    "status": "DOWN",
    "checks": [
        {
            "name": "Kafka Streams topics health check",
            "status": "DOWN",
            "data": {
                "missing_topics": "weather-stations,temperature-values"
            }
        }
    ]
}

Going Further

This guide has shown how you can build stream processing applications using Quarkus and the Kafka Streams APIs, both in JVM and native modes. For running your KStreams application in production, you could also add health checks and metrics for the data pipeline. Refer to the Quarkus guides on Micrometer, SmallRye Metrics, and SmallRye Health to learn more.

Referência de configuração

Propriedade de Configuração Fixa no Momento da Compilação - Todas as outras propriedades de configuração podem ser sobrepostas em tempo de execução.

Configuration property

Tipo

Padrão

quarkus.kafka-streams.health.enabled

Whether a health check is published in case the smallrye-health extension is present (defaults to true).

Environment variable: QUARKUS_KAFKA_STREAMS_HEALTH_ENABLED

Show more

boolean

true

quarkus.kafka-streams.application-id

A unique identifier for this Kafka Streams application. If not set, defaults to quarkus.application.name.

Environment variable: QUARKUS_KAFKA_STREAMS_APPLICATION_ID

Show more

string

${quarkus.application.name}

quarkus.kafka-streams.bootstrap-servers

A comma-separated list of host:port pairs identifying the Kafka bootstrap server(s). If not set, fallback to kafka.bootstrap.servers, and if not set either use localhost:9092.

Environment variable: QUARKUS_KAFKA_STREAMS_BOOTSTRAP_SERVERS

Show more

list of host:port

localhost:9092

quarkus.kafka-streams.application-server

A unique identifier of this application instance, typically in the form host:port.

Environment variable: QUARKUS_KAFKA_STREAMS_APPLICATION_SERVER

Show more

string

quarkus.kafka-streams.topics

A comma-separated list of topic names. The pipeline will only be started once all these topics are present in the Kafka cluster and ignore.topics is set to false.

Environment variable: QUARKUS_KAFKA_STREAMS_TOPICS

Show more

list of string

quarkus.kafka-streams.topics-timeout

Timeout to wait for topic names to be returned from admin client. If set to 0 (or negative), topics check is ignored.

Environment variable: QUARKUS_KAFKA_STREAMS_TOPICS_TIMEOUT

Show more

Duration

10S

quarkus.kafka-streams.schema-registry-key

The schema registry key. Different schema registry libraries expect a registry URL in different configuration properties. For Apicurio Registry, use apicurio.registry.url. For Confluent schema registry, use schema.registry.url.

Environment variable: QUARKUS_KAFKA_STREAMS_SCHEMA_REGISTRY_KEY

Show more

string

schema.registry.url

quarkus.kafka-streams.schema-registry-url

The schema registry URL.

Environment variable: QUARKUS_KAFKA_STREAMS_SCHEMA_REGISTRY_URL

Show more

string

quarkus.kafka-streams.security.protocol

Environment variable: QUARKUS_KAFKA_STREAMS_SECURITY_PROTOCOL

Show more

string

quarkus.kafka-streams.sasl.mechanism

SASL mechanism used for client connections

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_MECHANISM

Show more

string

quarkus.kafka-streams.sasl.jaas-config

JAAS login context parameters for SASL connections in the format used by JAAS configuration files

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_JAAS_CONFIG

Show more

string

quarkus.kafka-streams.sasl.client-callback-handler-class

The fully qualified name of a SASL client callback handler class

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_CLIENT_CALLBACK_HANDLER_CLASS

Show more

string

quarkus.kafka-streams.sasl.login-callback-handler-class

The fully qualified name of a SASL login callback handler class

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_LOGIN_CALLBACK_HANDLER_CLASS

Show more

string

quarkus.kafka-streams.sasl.login-class

The fully qualified name of a class that implements the Login interface

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_LOGIN_CLASS

Show more

string

quarkus.kafka-streams.sasl.kerberos-service-name

The Kerberos principal name that Kafka runs as

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_KERBEROS_SERVICE_NAME

Show more

string

quarkus.kafka-streams.sasl.kerberos-kinit-cmd

Kerberos kinit command path

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_KERBEROS_KINIT_CMD

Show more

string

quarkus.kafka-streams.sasl.kerberos-ticket-renew-window-factor

Login thread will sleep until the specified window factor of time from last refresh

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_KERBEROS_TICKET_RENEW_WINDOW_FACTOR

Show more

double

quarkus.kafka-streams.sasl.kerberos-ticket-renew-jitter

Percentage of random jitter added to the renewal time

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_KERBEROS_TICKET_RENEW_JITTER

Show more

double

quarkus.kafka-streams.sasl.kerberos-min-time-before-relogin

Percentage of random jitter added to the renewal time

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_KERBEROS_MIN_TIME_BEFORE_RELOGIN

Show more

long

quarkus.kafka-streams.sasl.login-refresh-window-factor

Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime has been reached-

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_LOGIN_REFRESH_WINDOW_FACTOR

Show more

double

quarkus.kafka-streams.sasl.login-refresh-window-jitter

The maximum amount of random jitter relative to the credential’s lifetime

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_LOGIN_REFRESH_WINDOW_JITTER

Show more

double

quarkus.kafka-streams.sasl.login-refresh-min-period

The desired minimum duration for the login refresh thread to wait before refreshing a credential

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_LOGIN_REFRESH_MIN_PERIOD

Show more

Duration

quarkus.kafka-streams.sasl.login-refresh-buffer

The amount of buffer duration before credential expiration to maintain when refreshing a credential

Environment variable: QUARKUS_KAFKA_STREAMS_SASL_LOGIN_REFRESH_BUFFER

Show more

Duration

quarkus.kafka-streams.ssl.protocol

The SSL protocol used to generate the SSLContext

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_PROTOCOL

Show more

string

quarkus.kafka-streams.ssl.provider

The name of the security provider used for SSL connections

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_PROVIDER

Show more

string

quarkus.kafka-streams.ssl.cipher-suites

A list of cipher suites

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_CIPHER_SUITES

Show more

string

quarkus.kafka-streams.ssl.enabled-protocols

The list of protocols enabled for SSL connections

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_ENABLED_PROTOCOLS

Show more

string

quarkus.kafka-streams.ssl.truststore.type

Trust store type

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_TRUSTSTORE_TYPE

Show more

string

quarkus.kafka-streams.ssl.truststore.location

Trust store location

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_TRUSTSTORE_LOCATION

Show more

string

quarkus.kafka-streams.ssl.truststore.password

Trust store password

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_TRUSTSTORE_PASSWORD

Show more

string

quarkus.kafka-streams.ssl.truststore.certificates

Trust store certificates

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_TRUSTSTORE_CERTIFICATES

Show more

string

quarkus.kafka-streams.ssl.keystore.type

Key store type

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEYSTORE_TYPE

Show more

string

quarkus.kafka-streams.ssl.keystore.location

Key store location

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEYSTORE_LOCATION

Show more

string

quarkus.kafka-streams.ssl.keystore.password

Key store password

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEYSTORE_PASSWORD

Show more

string

quarkus.kafka-streams.ssl.keystore.key

Key store private key

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEYSTORE_KEY

Show more

string

quarkus.kafka-streams.ssl.keystore.certificate-chain

Key store certificate chain

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEYSTORE_CERTIFICATE_CHAIN

Show more

string

quarkus.kafka-streams.ssl.key.password

Password of the private key in the key store

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEY_PASSWORD

Show more

string

quarkus.kafka-streams.ssl.keymanager-algorithm

The algorithm used by key manager factory for SSL connections

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_KEYMANAGER_ALGORITHM

Show more

string

quarkus.kafka-streams.ssl.trustmanager-algorithm

The algorithm used by trust manager factory for SSL connections

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_TRUSTMANAGER_ALGORITHM

Show more

string

quarkus.kafka-streams.ssl.endpoint-identification-algorithm

The endpoint identification algorithm to validate server hostname using server certificate

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_ENDPOINT_IDENTIFICATION_ALGORITHM

Show more

string

https

quarkus.kafka-streams.ssl.secure-random-implementation

The SecureRandom PRNG implementation to use for SSL cryptography operations

Environment variable: QUARKUS_KAFKA_STREAMS_SSL_SECURE_RANDOM_IMPLEMENTATION

Show more

string

About the Duration format

To write duration values, use the standard java.time.Duration format. See the Duration#parse() Java API documentation for more information.

Você também pode usar um formato simplificado, começando com um número:

  • Se o valor for apenas um número, ele representará o tempo em segundos.

  • Se o valor for um número seguido de 'ms', ele representa o tempo em milissegundos.

Em outros casos, o formato simplificado é traduzido para o formato 'java.time.Duration' para análise:

  • Se o valor for um número seguido de 'h', 'm' ou 's', ele é prefixado com 'PT'.

  • Se o valor for um número seguido de 'd', ele é prefixado com 'P'.

Conteúdo Relacionado